Delete distillbert-baseline.py
Browse files- distillbert-baseline.py +0 -68
distillbert-baseline.py
DELETED
@@ -1,68 +0,0 @@
|
|
1 |
-
from datasets import load_dataset
|
2 |
-
from transformers import TrainingArguments
|
3 |
-
from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
dataset = load_dataset("quotaclimat/frugalaichallenge-text-train")
|
9 |
-
|
10 |
-
# %% [markdown]
|
11 |
-
#
|
12 |
-
|
13 |
-
# %%
|
14 |
-
LABEL_MAPPING = {
|
15 |
-
"0_not_relevant": 0,
|
16 |
-
"1_not_happening": 1,
|
17 |
-
"2_not_human": 2,
|
18 |
-
"3_not_bad": 3,
|
19 |
-
"4_solutions_harmful_unnecessary": 4,
|
20 |
-
"5_science_unreliable": 5,
|
21 |
-
"6_proponents_biased": 6,
|
22 |
-
"7_fossil_fuels_needed": 7
|
23 |
-
}
|
24 |
-
|
25 |
-
# %%
|
26 |
-
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
27 |
-
|
28 |
-
# %%
|
29 |
-
print(dataset)
|
30 |
-
|
31 |
-
# %%
|
32 |
-
|
33 |
-
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
34 |
-
# Tokenize the datasets
|
35 |
-
def tokenize_function(examples):
|
36 |
-
return tokenizer(examples["quote"], padding="max_length", truncation=True)
|
37 |
-
|
38 |
-
train_dataset = dataset["train"].map(tokenize_function, batched=True)
|
39 |
-
test_dataset = dataset["test"].map(tokenize_function, batched=True)
|
40 |
-
|
41 |
-
|
42 |
-
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8) # Set num_labels for your classification task
|
43 |
-
|
44 |
-
# %%
|
45 |
-
|
46 |
-
# Define training arguments
|
47 |
-
training_args = TrainingArguments(
|
48 |
-
output_dir="./results", # Output directory for saved models
|
49 |
-
eval_strategy="epoch", # Evaluation strategy (can be "steps" or "epoch")
|
50 |
-
per_device_train_batch_size=16, # Batch size for training
|
51 |
-
per_device_eval_batch_size=64, # Batch size for evaluation
|
52 |
-
num_train_epochs=3, # Number of training epochs
|
53 |
-
logging_dir="./logs", # Directory for logs
|
54 |
-
logging_steps=10, # How often to log
|
55 |
-
)
|
56 |
-
|
57 |
-
|
58 |
-
# %%
|
59 |
-
|
60 |
-
trainer = Trainer(
|
61 |
-
model=model, # The model to train
|
62 |
-
args=training_args, # The training arguments
|
63 |
-
train_dataset=train_dataset, # The training dataset
|
64 |
-
eval_dataset=test_dataset # The evaluation dataset
|
65 |
-
)
|
66 |
-
trainer.train()
|
67 |
-
results = trainer.evaluate()
|
68 |
-
print(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|