Create distillbert-baseline.py
Browse files- distillbert-baseline.py +68 -0
distillbert-baseline.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import TrainingArguments
|
3 |
+
from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
dataset = load_dataset("quotaclimat/frugalaichallenge-text-train")
|
9 |
+
|
10 |
+
# %% [markdown]
|
11 |
+
#
|
12 |
+
|
13 |
+
# %%
|
14 |
+
LABEL_MAPPING = {
|
15 |
+
"0_not_relevant": 0,
|
16 |
+
"1_not_happening": 1,
|
17 |
+
"2_not_human": 2,
|
18 |
+
"3_not_bad": 3,
|
19 |
+
"4_solutions_harmful_unnecessary": 4,
|
20 |
+
"5_science_unreliable": 5,
|
21 |
+
"6_proponents_biased": 6,
|
22 |
+
"7_fossil_fuels_needed": 7
|
23 |
+
}
|
24 |
+
|
25 |
+
# %%
|
26 |
+
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
27 |
+
|
28 |
+
# %%
|
29 |
+
print(dataset)
|
30 |
+
|
31 |
+
# %%
|
32 |
+
|
33 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
34 |
+
# Tokenize the datasets
|
35 |
+
def tokenize_function(examples):
|
36 |
+
return tokenizer(examples["quote"], padding="max_length", truncation=True)
|
37 |
+
|
38 |
+
train_dataset = dataset["train"].map(tokenize_function, batched=True)
|
39 |
+
test_dataset = dataset["test"].map(tokenize_function, batched=True)
|
40 |
+
|
41 |
+
|
42 |
+
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8) # Set num_labels for your classification task
|
43 |
+
|
44 |
+
# %%
|
45 |
+
|
46 |
+
# Define training arguments
|
47 |
+
training_args = TrainingArguments(
|
48 |
+
output_dir="./results", # Output directory for saved models
|
49 |
+
eval_strategy="epoch", # Evaluation strategy (can be "steps" or "epoch")
|
50 |
+
per_device_train_batch_size=16, # Batch size for training
|
51 |
+
per_device_eval_batch_size=64, # Batch size for evaluation
|
52 |
+
num_train_epochs=3, # Number of training epochs
|
53 |
+
logging_dir="./logs", # Directory for logs
|
54 |
+
logging_steps=10, # How often to log
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
# %%
|
59 |
+
|
60 |
+
trainer = Trainer(
|
61 |
+
model=model, # The model to train
|
62 |
+
args=training_args, # The training arguments
|
63 |
+
train_dataset=train_dataset, # The training dataset
|
64 |
+
eval_dataset=test_dataset # The evaluation dataset
|
65 |
+
)
|
66 |
+
trainer.train()
|
67 |
+
results = trainer.evaluate()
|
68 |
+
print(results)
|