File size: 14,257 Bytes
3cd442e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4ce7601290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4ce7601320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4ce76013b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4ce7601440>", "_build": "<function ActorCriticPolicy._build at 0x7f4ce76014d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4ce7601560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4ce76015f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4ce7601680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4ce7601710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4ce76017a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4ce7601830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4ce76542a0>"}, "verbose": 3, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3538944, "_total_timesteps": 3500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651680836.7146873, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpWlj0ZFh4+0mmvvh71475KCsc87pyavgAAAAAAAAAAJijHPf6jrT/YbNg+7wvEvvcDHD4uoo0+AAAAAAAAAAAtx4A+T8uqPzhgET/6gRK/z7UAPzq0MD4AAAAAAAAAABpEtL2xatY+CLaHvKmcIL8ZMhi+nl/UPQAAAAAAAAAATZo9vaTcYbtdua0+85IGve8X/LwTAjs+AACAPwAAAABzvui9q8ZTP0yYq73c8i2/BN1Svgv1Vj0AAAAAAAAAAM0r8DzBO7M/MuG/PXL0ur42z6o9kn3ePQAAAAAAAAAApkf+PTkarT80P5s+hzsYv7GVdT4Q0LQ9AAAAAAAAAAAz95u8e3mHvD1LuT1OsCM8H+8qvT20Ub4AAIA/AACAP/oXTj6HdhE/0xaEvTlbC78hYYY+iTc/vgAAAAAAAAAAAH0YvVzjHLrgsLk4zUT8MV1tO7tL89i3AACAPwAAgD+zXEQ++nJSPzN6Rb2EDi6/FS1zPiJxGL4AAAAAAAAAADNRnDxsfoW7wlqJvkqzW71ridE9+wyZvQAAAAAAAIA/AOulPKOSkT/U4rw9+RE1vwcLiTyVBDw9AAAAAAAAAAAGsW4+RjmgPxaGED9xFw6/O7bcPu5QeT4AAAAAAAAAALMCE70SdrE/8x6Qvnoreb57DM68qowTvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.011126857142857105, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbApkdtbAckCUhpRSlIwBbJRLu4wBdJRHQMbcVJUgjhV1fZQoaAZoCWgPQwhjDoKOFk9yQJSGlFKUaBVLx2gWR0DG3GY24uscdX2UKGgGaAloD0MIEHnL1c+OcECUhpRSlGgVS7toFkdAxtxpLdvbXnV9lChoBmgJaA9DCGCSyhQzCXNAlIaUUpRoFUvfaBZHQMbccFs54np1fZQoaAZoCWgPQwj3PeqvV1JzQJSGlFKUaBVLsGgWR0DG3Hs72cridX2UKGgGaAloD0MIXaW762zOc0CUhpRSlGgVS9VoFkdAxtyy/tY0VXV9lChoBmgJaA9DCNyg9lu76XJAlIaUUpRoFUvZaBZHQMbctu+IuXh1fZQoaAZoCWgPQwjqBZ/mJJ9xQJSGlFKUaBVLs2gWR0DG3Lc1uR9xdX2UKGgGaAloD0MI29styUGzcUCUhpRSlGgVS8JoFkdAxtzCmReTmnV9lChoBmgJaA9DCFT83xGVuXBAlIaUUpRoFUulaBZHQMbcyWT5ftx1fZQoaAZoCWgPQwjudr00BWFzQJSGlFKUaBVLsGgWR0DG3MtII4VAdX2UKGgGaAloD0MIBcQkXIjSc0CUhpRSlGgVS8RoFkdAxtzbEDyOJnV9lChoBmgJaA9DCLU1IhjHbXFAlIaUUpRoFUvqaBZHQMbc3MY/FBJ1fZQoaAZoCWgPQwg2rRQCuZ9wQJSGlFKUaBVLxWgWR0DG3NzdP+GXdX2UKGgGaAloD0MIecn/5G9WcECUhpRSlGgVS9ZoFkdAxtzqRoysS3V9lChoBmgJaA9DCAckYd9OYXFAlIaUUpRoFUu4aBZHQMbc71G9YfZ1fZQoaAZoCWgPQwid9SnHpLFyQJSGlFKUaBVLx2gWR0DG3QWG9HtndX2UKGgGaAloD0MIrrzkfzJncECUhpRSlGgVS7loFkdAxt0JWTX8O3V9lChoBmgJaA9DCKhvmdOlrXFAlIaUUpRoFUuwaBZHQMbdFjziCJ51fZQoaAZoCWgPQwgWF0flpl9xQJSGlFKUaBVLxmgWR0DG3RcLYwqRdX2UKGgGaAloD0MILNhGPJkYdECUhpRSlGgVS+doFkdAxt07NtZV43V9lChoBmgJaA9DCN3qOem9HnFAlIaUUpRoFUukaBZHQMbdWH6l+E11fZQoaAZoCWgPQwjW5Cmr6UVxQJSGlFKUaBVLomgWR0DG3ViOaOPvdX2UKGgGaAloD0MIStHKvcCxckCUhpRSlGgVS8BoFkdAxt1cmzByj3V9lChoBmgJaA9DCG3kuillPXNAlIaUUpRoFUvDaBZHQMbdY4W+GoJ1fZQoaAZoCWgPQwh/arx0U6hwQJSGlFKUaBVLnWgWR0DG3WZBqsU7dX2UKGgGaAloD0MI2BGHbKD5c0CUhpRSlGgVS79oFkdAxt1rwXIlt3V9lChoBmgJaA9DCLpL4qzIgXNAlIaUUpRoFUuoaBZHQMbdcUk4WDZ1fZQoaAZoCWgPQwgE4nX9gtByQJSGlFKUaBVL0mgWR0DG3XFWwNb1dX2UKGgGaAloD0MIKXY0DnVrcECUhpRSlGgVS55oFkdAxt11WQOnVHV9lChoBmgJaA9DCIwS9Be6G3NAlIaUUpRoFUuxaBZHQMbdeDVhCt11fZQoaAZoCWgPQwh/3H75JM9wQJSGlFKUaBVLumgWR0DG3Y8k8ifQdX2UKGgGaAloD0MIcqYJ288Uc0CUhpRSlGgVS7doFkdAxt2jamGdqnV9lChoBmgJaA9DCIlccAZ/AHNAlIaUUpRoFUujaBZHQMbdo4Irvst1fZQoaAZoCWgPQwjtYprpHvZwQJSGlFKUaBVLvGgWR0DG3av3JxNqdX2UKGgGaAloD0MIsRafAiBmcECUhpRSlGgVS7BoFkdAxt2vm6GxlnV9lChoBmgJaA9DCOdWCKtxr3FAlIaUUpRoFUvFaBZHQMbd543eenR1fZQoaAZoCWgPQwhZorPMYqNyQJSGlFKUaBVLmWgWR0DG3e3tlZoxdX2UKGgGaAloD0MIw7zHmebTckCUhpRSlGgVS7JoFkdAxt3y/7iyZHV9lChoBmgJaA9DCBOc+kAyG3FAlIaUUpRoFUuoaBZHQMbeBRfWtlt1fZQoaAZoCWgPQwh2wHXFzE1zQJSGlFKUaBVLvmgWR0DG3gcKzAvddX2UKGgGaAloD0MIkMGKUy3kcECUhpRSlGgVS7BoFkdAxt4ICdSVGHV9lChoBmgJaA9DCB+hZkgVAnFAlIaUUpRoFUuyaBZHQMbeCc89wFV1fZQoaAZoCWgPQwhoIQGji/VwQJSGlFKUaBVLzWgWR0DG3gqPGQ0XdX2UKGgGaAloD0MIVRLZB1lVckCUhpRSlGgVS7FoFkdAxt4QP0Zm7XV9lChoBmgJaA9DCMiW5euyFHJAlIaUUpRoFUvNaBZHQMbeFStvGZN1fZQoaAZoCWgPQwiiXYWU32hyQJSGlFKUaBVL5GgWR0DG3h9HQQcxdX2UKGgGaAloD0MIJEc6AyPScUCUhpRSlGgVS6poFkdAxt4hi704BHV9lChoBmgJaA9DCNAM4gO7xXBAlIaUUpRoFUuqaBZHQMbeMtM495h1fZQoaAZoCWgPQwhDOGbZEyVxQJSGlFKUaBVLnGgWR0DG3jLHlwLmdX2UKGgGaAloD0MIcyzvqgeFb0CUhpRSlGgVS7NoFkdAxt451schknV9lChoBmgJaA9DCO4IpwXvrXNAlIaUUpRoFUu6aBZHQMbeRrsjVx11fZQoaAZoCWgPQwhQq+gPDbRwQJSGlFKUaBVLqmgWR0DG3nNCkXUIdX2UKGgGaAloD0MIZfz7jAuWcECUhpRSlGgVS7VoFkdAxt6Iig00nHV9lChoBmgJaA9DCAw+zcmL53FAlIaUUpRoFUu9aBZHQMbeiwo9cKR1fZQoaAZoCWgPQwjHYptUdJVxQJSGlFKUaBVLpGgWR0DG3pFv0h/zdX2UKGgGaAloD0MIIO7qVSTJcECUhpRSlGgVS71oFkdAxt6hSUC7snV9lChoBmgJaA9DCCpTzEFQyXJAlIaUUpRoFUvFaBZHQMbeqel9Brx1fZQoaAZoCWgPQwgZOQt72o9wQJSGlFKUaBVLqWgWR0DG3qxujynUdX2UKGgGaAloD0MIG4ANiNCKckCUhpRSlGgVS8doFkdAxt6sZXuE3HV9lChoBmgJaA9DCNJtiVywN3FAlIaUUpRoFUu6aBZHQMberyJsO5J1fZQoaAZoCWgPQwhaSMDosjJyQJSGlFKUaBVLyWgWR0DG3q+4NI9UdX2UKGgGaAloD0MItHQF20ixcECUhpRSlGgVS7JoFkdAxt6177bcoHV9lChoBmgJaA9DCOTZ5VufJnNAlIaUUpRoFUvTaBZHQMbevO9nK4h1fZQoaAZoCWgPQwhwYd14dy1yQJSGlFKUaBVLp2gWR0DG3r+OZLIxdX2UKGgGaAloD0MIk9+ik+VxdECUhpRSlGgVS7poFkdAxt7NnYg7o3V9lChoBmgJaA9DCOavkLkyem9AlIaUUpRoFUvDaBZHQMbe3CrT6SF1fZQoaAZoCWgPQwhivrwA+2NwQJSGlFKUaBVLqGgWR0DG3wCKcd5qdX2UKGgGaAloD0MID37iAPrBckCUhpRSlGgVS91oFkdAxt8DBGhEjXV9lChoBmgJaA9DCMOgTKOJJnJAlIaUUpRoFUu2aBZHQMbfJfDLr5Z1fZQoaAZoCWgPQwh7oYDt4G1wQJSGlFKUaBVLpWgWR0DG3zlKqXF+dX2UKGgGaAloD0MI2uIan4lEc0CUhpRSlGgVS7NoFkdAxt89VZs9CHV9lChoBmgJaA9DCOf+6nFfRXNAlIaUUpRoFUvYaBZHQMbfRLOZ9eB1fZQoaAZoCWgPQwidobjjDcRyQJSGlFKUaBVL12gWR0DG301bmlqKdX2UKGgGaAloD0MIOnr83qatcUCUhpRSlGgVS8BoFkdAxt9ZJPqLTHV9lChoBmgJaA9DCF7yP/m7/nFAlIaUUpRoFUu7aBZHQMbfXRmCiAV1fZQoaAZoCWgPQwgP0765P/RzQJSGlFKUaBVLzGgWR0DG32TfixVydX2UKGgGaAloD0MI66urArV3c0CUhpRSlGgVS9RoFkdAxt9oqUeMh3V9lChoBmgJaA9DCGb2eYxy4XBAlIaUUpRoFUuhaBZHQMbfc4EW69V1fZQoaAZoCWgPQwjx8QnZuYBxQJSGlFKUaBVLxmgWR0DG33Od9UjtdX2UKGgGaAloD0MIiulCrL6Oc0CUhpRSlGgVS+BoFkdAxt90cGTs6nV9lChoBmgJaA9DCF4QkZq2HXBAlIaUUpRoFUu5aBZHQMbfeEsBhhJ1fZQoaAZoCWgPQwheglMfiHJzQJSGlFKUaBVL12gWR0DG334wudwvdX2UKGgGaAloD0MIwjI2dDOcckCUhpRSlGgVS55oFkdAxt+PYeT3ZnV9lChoBmgJaA9DCIvCLooeEnBAlIaUUpRoFUuxaBZHQMbfoKiO/+N1fZQoaAZoCWgPQwiN0M/UKzZyQJSGlFKUaBVLmmgWR0DG375SpBHDdX2UKGgGaAloD0MIvwrw3Wa/c0CUhpRSlGgVS7VoFkdAxt/E9Oh0yXV9lChoBmgJaA9DCLx5qkMuy3BAlIaUUpRoFUufaBZHQMbfzVtXPqt1fZQoaAZoCWgPQwhr2O+JNX1xQJSGlFKUaBVLqWgWR0DG3+l54W1udX2UKGgGaAloD0MIbmqg+Rysc0CUhpRSlGgVS9FoFkdAxt/0tPHktHV9lChoBmgJaA9DCFeW6CyzA3FAlIaUUpRoFUuyaBZHQMbf9xekYXR1fZQoaAZoCWgPQwhQiesYl9NxQJSGlFKUaBVLxGgWR0DG3/hQgs9TdX2UKGgGaAloD0MIwocSLTkecUCUhpRSlGgVS6xoFkdAxt/8tdRiw3V9lChoBmgJaA9DCH9QFykUk3BAlIaUUpRoFUu5aBZHQMbgEOmixml1fZQoaAZoCWgPQwiXcVMDja9wQJSGlFKUaBVLs2gWR0DG4BDjBEa3dX2UKGgGaAloD0MIKgMHtLSecUCUhpRSlGgVS71oFkdAxuAVK02LpHV9lChoBmgJaA9DCCY5YFdT2HNAlIaUUpRoFUvWaBZHQMbgHLYf4h51fZQoaAZoCWgPQwj5g4HnHo1yQJSGlFKUaBVLzWgWR0DG4CG3QUpNdX2UKGgGaAloD0MIBrzMsFEqb0CUhpRSlGgVS6poFkdAxuAjOdoWYXV9lChoBmgJaA9DCM7DCUznT3FAlIaUUpRoFUvGaBZHQMbgJus1baB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 504, "n_steps": 3072, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 7, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}