Commit
·
d9e3c72
1
Parent(s):
2b1d791
update model card README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: convnext-tiny-224-finetuned-brs
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8235294117647058
|
26 |
+
- name: F1
|
27 |
+
type: f1
|
28 |
+
value: 0.7272727272727272
|
29 |
---
|
30 |
+
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
# convnext-tiny-224-finetuned-brs
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.8667
|
39 |
+
- Accuracy: 0.8235
|
40 |
+
- F1: 0.7273
|
41 |
+
- Precision (ppv): 0.8
|
42 |
+
- Recall (sensitivity): 0.6667
|
43 |
+
- Specificity: 0.9091
|
44 |
+
- Npv: 0.8333
|
45 |
+
- Auc: 0.7879
|
46 |
+
|
47 |
+
## Model description
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Intended uses & limitations
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training and evaluation data
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training procedure
|
60 |
+
|
61 |
+
### Training hyperparameters
|
62 |
+
|
63 |
+
The following hyperparameters were used during training:
|
64 |
+
- learning_rate: 1e-05
|
65 |
+
- train_batch_size: 1
|
66 |
+
- eval_batch_size: 1
|
67 |
+
- seed: 42
|
68 |
+
- gradient_accumulation_steps: 4
|
69 |
+
- total_train_batch_size: 4
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- lr_scheduler_warmup_ratio: 0.1
|
73 |
+
- num_epochs: 100
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision (ppv) | Recall (sensitivity) | Specificity | Npv | Auc |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------------:|:--------------------:|:-----------:|:------:|:------:|
|
79 |
+
| 0.6766 | 6.25 | 100 | 0.7002 | 0.4706 | 0.5263 | 0.3846 | 0.8333 | 0.2727 | 0.75 | 0.5530 |
|
80 |
+
| 0.6408 | 12.49 | 200 | 0.6770 | 0.6471 | 0.5714 | 0.5 | 0.6667 | 0.6364 | 0.7778 | 0.6515 |
|
81 |
+
| 0.464 | 18.74 | 300 | 0.6624 | 0.5882 | 0.5882 | 0.4545 | 0.8333 | 0.4545 | 0.8333 | 0.6439 |
|
82 |
+
| 0.4295 | 24.98 | 400 | 0.6938 | 0.5294 | 0.5 | 0.4 | 0.6667 | 0.4545 | 0.7143 | 0.5606 |
|
83 |
+
| 0.3952 | 31.25 | 500 | 0.5974 | 0.7059 | 0.6154 | 0.5714 | 0.6667 | 0.7273 | 0.8 | 0.6970 |
|
84 |
+
| 0.1082 | 37.49 | 600 | 0.6163 | 0.6471 | 0.5 | 0.5 | 0.5 | 0.7273 | 0.7273 | 0.6136 |
|
85 |
+
| 0.1997 | 43.74 | 700 | 0.6155 | 0.7059 | 0.6154 | 0.5714 | 0.6667 | 0.7273 | 0.8 | 0.6970 |
|
86 |
+
| 0.1267 | 49.98 | 800 | 0.9063 | 0.6471 | 0.5714 | 0.5 | 0.6667 | 0.6364 | 0.7778 | 0.6515 |
|
87 |
+
| 0.1178 | 56.25 | 900 | 0.8672 | 0.7059 | 0.6667 | 0.5556 | 0.8333 | 0.6364 | 0.875 | 0.7348 |
|
88 |
+
| 0.2008 | 62.49 | 1000 | 0.7049 | 0.8235 | 0.7692 | 0.7143 | 0.8333 | 0.8182 | 0.9 | 0.8258 |
|
89 |
+
| 0.0996 | 68.74 | 1100 | 0.4510 | 0.8235 | 0.7692 | 0.7143 | 0.8333 | 0.8182 | 0.9 | 0.8258 |
|
90 |
+
| 0.0115 | 74.98 | 1200 | 0.7561 | 0.8235 | 0.7692 | 0.7143 | 0.8333 | 0.8182 | 0.9 | 0.8258 |
|
91 |
+
| 0.0177 | 81.25 | 1300 | 1.0400 | 0.7059 | 0.6667 | 0.5556 | 0.8333 | 0.6364 | 0.875 | 0.7348 |
|
92 |
+
| 0.0261 | 87.49 | 1400 | 0.9139 | 0.8235 | 0.7692 | 0.7143 | 0.8333 | 0.8182 | 0.9 | 0.8258 |
|
93 |
+
| 0.028 | 93.74 | 1500 | 0.7367 | 0.7647 | 0.7143 | 0.625 | 0.8333 | 0.7273 | 0.8889 | 0.7803 |
|
94 |
+
| 0.0056 | 99.98 | 1600 | 0.8667 | 0.8235 | 0.7273 | 0.8 | 0.6667 | 0.9091 | 0.8333 | 0.7879 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.23.1
|
100 |
+
- Pytorch 1.12.1+cu113
|
101 |
+
- Datasets 2.6.1
|
102 |
+
- Tokenizers 0.13.1
|