File size: 5,152 Bytes
2358189
12816ee
 
 
2358189
 
 
12816ee
 
 
fba7908
12816ee
 
 
 
2358189
 
 
12816ee
 
517246a
12816ee
 
 
2358189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12816ee
2358189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12816ee
2358189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f3ed8
2358189
12816ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
language: en
license: mit
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- task-oriented-dialogues
- dialog-flow
datasets:
- sergioburdisso/dialog2flow-dataset
- Salesforce/dialogstudio
pipeline_tag: sentence-similarity
base_model:
- aws-ai/dse-bert-base
---


# Dialog2Flow joint target (DSE-base)

This a variation of the **D2F$_{joint}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://arxiv.org/abs/2410.18481) published in the EMNLP 2024 main conference.
This version uses DSE-base as the backbone model which yields to an increase in performance as compared to the vanilla version using BERT-base as the backbone (results reported in Appendix C).

Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["your phone please", "okay may i have your telephone number please"]

model = SentenceTransformer('sergioburdisso/dialog2flow-joint-dse-base')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['your phone please', 'okay may i have your telephone number please']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-joint-dse-base')
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-joint-dse-base')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```

## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 363506 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss` 

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 49478 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 15,
    "evaluation_steps": 164,
    "evaluator": [
        "spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator"
    ],
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 3e-06
    },
    "scheduler": "WarmupLinear",
    "warmup_steps": 100,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citation


```bibtex
@inproceedings{burdisso-etal-2024-dialog2flow,
    title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
    author = "Burdisso, Sergio  and
      Madikeri, Srikanth  and
      Motlicek, Petr",
    booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2024",
    address = "Miami",
    publisher = "Association for Computational Linguistics",
}
```

## License

Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
MIT License.