sergioburdisso
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -11,14 +11,13 @@ datasets:
|
|
11 |
- Salesforce/dialogstudio
|
12 |
pipeline_tag: sentence-similarity
|
13 |
base_model:
|
14 |
-
-
|
15 |
---
|
16 |
|
17 |
|
18 |
-
# Dialog2Flow
|
19 |
|
20 |
-
This
|
21 |
-
This version uses DSE-base as the backbone model which yields to an increase in performance as compared to the vanilla version using BERT-base as the backbone (results reported in Appendix C).
|
22 |
|
23 |
Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.
|
24 |
|
@@ -38,7 +37,7 @@ Then you can use the model like this:
|
|
38 |
from sentence_transformers import SentenceTransformer
|
39 |
sentences = ["your phone please", "okay may i have your telephone number please"]
|
40 |
|
41 |
-
model = SentenceTransformer('sergioburdisso/dialog2flow-
|
42 |
embeddings = model.encode(sentences)
|
43 |
print(embeddings)
|
44 |
```
|
@@ -64,8 +63,8 @@ def mean_pooling(model_output, attention_mask):
|
|
64 |
sentences = ['your phone please', 'okay may i have your telephone number please']
|
65 |
|
66 |
# Load model from HuggingFace Hub
|
67 |
-
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-
|
68 |
-
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-
|
69 |
|
70 |
# Tokenize sentences
|
71 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -154,4 +153,4 @@ SentenceTransformer(
|
|
154 |
## License
|
155 |
|
156 |
Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
|
157 |
-
MIT License.
|
|
|
11 |
- Salesforce/dialogstudio
|
12 |
pipeline_tag: sentence-similarity
|
13 |
base_model:
|
14 |
+
- google-bert/bert-base-uncased
|
15 |
---
|
16 |
|
17 |
|
18 |
+
# Dialog2Flow joint target (BERT-base)
|
19 |
|
20 |
+
This is the original **D2F$_{joint}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://publications.idiap.ch/attachments/papers/2024/Burdisso_EMNLP2024_2024.pdf) published in the EMNLP 2024 main conference.
|
|
|
21 |
|
22 |
Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.
|
23 |
|
|
|
37 |
from sentence_transformers import SentenceTransformer
|
38 |
sentences = ["your phone please", "okay may i have your telephone number please"]
|
39 |
|
40 |
+
model = SentenceTransformer('sergioburdisso/dialog2flow-joint-bert-base')
|
41 |
embeddings = model.encode(sentences)
|
42 |
print(embeddings)
|
43 |
```
|
|
|
63 |
sentences = ['your phone please', 'okay may i have your telephone number please']
|
64 |
|
65 |
# Load model from HuggingFace Hub
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')
|
67 |
+
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')
|
68 |
|
69 |
# Tokenize sentences
|
70 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
153 |
## License
|
154 |
|
155 |
Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
|
156 |
+
MIT License.
|