File size: 4,986 Bytes
184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 763d294 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 184bad6 20d0716 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
language: en
license: mit
library_name: sentence-transformers
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- Salesforce/dialogstudio
pipeline_tag: sentence-similarity
base_model:
- google-bert/bert-base-uncased
---
# Dialog2Flow joint target (BERT-base)
This is the original **D2F$_{joint}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://publications.idiap.ch/attachments/papers/2024/Burdisso_EMNLP2024_2024.pdf) published in the EMNLP 2024 main conference.
Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["your phone please", "okay may i have your telephone number please"]
model = SentenceTransformer('sergioburdisso/dialog2flow-joint-bert-base')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['your phone please', 'okay may i have your telephone number please']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 363506 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss`
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 49478 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss`
Parameters of the fit()-Method:
```
{
"epochs": 15,
"evaluation_steps": 164,
"evaluator": [
"spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator"
],
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 3e-06
},
"scheduler": "WarmupLinear",
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
```bibtex
@inproceedings{burdisso-etal-2024-dialog2flow,
title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
author = "Burdisso, Sergio and
Madikeri, Srikanth and
Motlicek, Petr",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami",
publisher = "Association for Computational Linguistics",
}
```
## License
Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
MIT License.
|