sergifusterdura commited on
Commit
08710b3
·
verified ·
1 Parent(s): ec50563

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -130
README.md CHANGED
@@ -1,131 +1,131 @@
1
- ---
2
- tags:
3
- - setfit
4
- - sentence-transformers
5
- - text-classification
6
- - generated_from_setfit_trainer
7
- widget: []
8
- metrics:
9
- - accuracy
10
- pipeline_tag: text-classification
11
- library_name: setfit
12
- inference: true
13
- base_model: BAAI/bge-small-en-v1.5
14
- ---
15
-
16
- # SetFit with BAAI/bge-small-en-v1.5
17
-
18
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
19
-
20
- The model has been trained using an efficient few-shot learning technique that involves:
21
-
22
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
23
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
24
-
25
- ## Model Details
26
-
27
- ### Model Description
28
- - **Model Type:** SetFit
29
- - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
30
- - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
31
- - **Maximum Sequence Length:** 512 tokens
32
- - **Number of Classes:** 6 classes
33
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
34
- <!-- - **Language:** Unknown -->
35
- <!-- - **License:** Unknown -->
36
-
37
- ### Model Sources
38
-
39
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
40
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
41
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
42
-
43
- ## Uses
44
-
45
- ### Direct Use for Inference
46
-
47
- First install the SetFit library:
48
-
49
- ```bash
50
- pip install setfit
51
- ```
52
-
53
- Then you can load this model and run inference.
54
-
55
- ```python
56
- from setfit import SetFitModel
57
-
58
- # Download from the 🤗 Hub
59
- model = SetFitModel.from_pretrained("sergifusterdura/dailynoteclassifier-setfit-v1.5-16-shot")
60
- # Run inference
61
- preds = model("I loved the spiderman movie!")
62
- ```
63
-
64
- <!--
65
- ### Downstream Use
66
-
67
- *List how someone could finetune this model on their own dataset.*
68
- -->
69
-
70
- <!--
71
- ### Out-of-Scope Use
72
-
73
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
74
- -->
75
-
76
- <!--
77
- ## Bias, Risks and Limitations
78
-
79
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
80
- -->
81
-
82
- <!--
83
- ### Recommendations
84
-
85
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
86
- -->
87
-
88
- ## Training Details
89
-
90
- ### Framework Versions
91
- - Python: 3.11.5
92
- - SetFit: 1.1.0
93
- - Sentence Transformers: 3.3.1
94
- - Transformers: 4.46.3
95
- - PyTorch: 2.5.1+cpu
96
- - Datasets: 3.1.0
97
- - Tokenizers: 0.20.3
98
-
99
- ## Citation
100
-
101
- ### BibTeX
102
- ```bibtex
103
- @article{https://doi.org/10.48550/arxiv.2209.11055,
104
- doi = {10.48550/ARXIV.2209.11055},
105
- url = {https://arxiv.org/abs/2209.11055},
106
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
107
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
108
- title = {Efficient Few-Shot Learning Without Prompts},
109
- publisher = {arXiv},
110
- year = {2022},
111
- copyright = {Creative Commons Attribution 4.0 International}
112
- }
113
- ```
114
-
115
- <!--
116
- ## Glossary
117
-
118
- *Clearly define terms in order to be accessible across audiences.*
119
- -->
120
-
121
- <!--
122
- ## Model Card Authors
123
-
124
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
125
- -->
126
-
127
- <!--
128
- ## Model Card Contact
129
-
130
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
131
  -->
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget: []
8
+ metrics:
9
+ - accuracy
10
+ pipeline_tag: text-classification
11
+ library_name: setfit
12
+ inference: true
13
+ base_model: BAAI/bge-small-en-v1.5
14
+ ---
15
+
16
+ # SetFit with BAAI/bge-small-en-v1.5
17
+
18
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
19
+
20
+ The model has been trained using an efficient few-shot learning technique that involves:
21
+
22
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
23
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
24
+
25
+ ## Model Details
26
+
27
+ ### Model Description
28
+ - **Model Type:** SetFit
29
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
30
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
31
+ - **Maximum Sequence Length:** 512 tokens
32
+ - **Number of Classes:** 6 classes
33
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
34
+ <!-- - **Language:** Unknown -->
35
+ <!-- - **License:** Unknown -->
36
+
37
+ ### Model Sources
38
+
39
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
40
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
41
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
42
+
43
+ ## Uses
44
+
45
+ ### Direct Use for Inference
46
+
47
+ First install the SetFit library:
48
+
49
+ ```bash
50
+ pip install setfit
51
+ ```
52
+
53
+ Then you can load this model and run inference.
54
+
55
+ ```python
56
+ from setfit import SetFitModel
57
+
58
+ # Download from the 🤗 Hub
59
+ model = SetFitModel.from_pretrained("sergifusterdura/dailynoteclassifier-setfit-v1.5-16-shot")
60
+ # Run inference
61
+ preds = model("Tengo que ir a comprar fruta esta tarde.")
62
+ ```
63
+
64
+ <!--
65
+ ### Downstream Use
66
+
67
+ *List how someone could finetune this model on their own dataset.*
68
+ -->
69
+
70
+ <!--
71
+ ### Out-of-Scope Use
72
+
73
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
74
+ -->
75
+
76
+ <!--
77
+ ## Bias, Risks and Limitations
78
+
79
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
80
+ -->
81
+
82
+ <!--
83
+ ### Recommendations
84
+
85
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
86
+ -->
87
+
88
+ ## Training Details
89
+
90
+ ### Framework Versions
91
+ - Python: 3.11.5
92
+ - SetFit: 1.1.0
93
+ - Sentence Transformers: 3.3.1
94
+ - Transformers: 4.46.3
95
+ - PyTorch: 2.5.1+cpu
96
+ - Datasets: 3.1.0
97
+ - Tokenizers: 0.20.3
98
+
99
+ ## Citation
100
+
101
+ ### BibTeX
102
+ ```bibtex
103
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
104
+ doi = {10.48550/ARXIV.2209.11055},
105
+ url = {https://arxiv.org/abs/2209.11055},
106
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
107
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
108
+ title = {Efficient Few-Shot Learning Without Prompts},
109
+ publisher = {arXiv},
110
+ year = {2022},
111
+ copyright = {Creative Commons Attribution 4.0 International}
112
+ }
113
+ ```
114
+
115
+ <!--
116
+ ## Glossary
117
+
118
+ *Clearly define terms in order to be accessible across audiences.*
119
+ -->
120
+
121
+ <!--
122
+ ## Model Card Authors
123
+
124
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
125
+ -->
126
+
127
+ <!--
128
+ ## Model Card Contact
129
+
130
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
131
  -->