Training in progress, step 500
Browse files- config.json +60 -0
- embedding.py +29 -0
- eval.py +84 -0
- model.safetensors +3 -0
- reader.py +36 -0
- runs/Nov22_13-17-25_workspace-yt5idya013hw-0/events.out.tfevents.1700659046.workspace-yt5idya013hw-0.37370.0 +3 -0
- runs/Nov22_13-18-19_workspace-yt5idya013hw-0/events.out.tfevents.1700659101.workspace-yt5idya013hw-0.38133.0 +3 -0
- runs/Nov22_13-19-06_workspace-yt5idya013hw-0/events.out.tfevents.1700659147.workspace-yt5idya013hw-0.39864.0 +3 -0
- runs/Nov22_13-20-04_workspace-yt5idya013hw-0/events.out.tfevents.1700659206.workspace-yt5idya013hw-0.42035.0 +3 -0
- runs/Nov22_13-20-53_workspace-yt5idya013hw-0/events.out.tfevents.1700659254.workspace-yt5idya013hw-0.43999.0 +3 -0
- runs/Nov22_13-21-31_workspace-yt5idya013hw-0/events.out.tfevents.1700659293.workspace-yt5idya013hw-0.45721.0 +3 -0
- runs/Nov22_13-22-38_workspace-yt5idya013hw-0/events.out.tfevents.1700659361.workspace-yt5idya013hw-0.48336.0 +3 -0
- runs/Nov22_13-34-19_workspace-yt5idya013hw-0/events.out.tfevents.1700660060.workspace-yt5idya013hw-0.67705.0 +3 -0
- special_tokens_map.json +110 -0
- summarizer.py +24 -0
- tokenizer.json +0 -0
- tokenizer_config.json +967 -0
- train.py +65 -0
- training_args.bin +3 -0
- utils.py +57 -0
config.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/pegasus-x-base",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"activation_function": "relu",
|
5 |
+
"add_bias_logits": false,
|
6 |
+
"add_final_layer_norm": true,
|
7 |
+
"architectures": [
|
8 |
+
"PegasusXForConditionalGeneration"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.1,
|
11 |
+
"block_size": 512,
|
12 |
+
"bos_token_id": 0,
|
13 |
+
"classif_dropout": 0.0,
|
14 |
+
"classifier_dropout": 0.0,
|
15 |
+
"d_model": 768,
|
16 |
+
"decoder_attention_heads": 12,
|
17 |
+
"decoder_ffn_dim": 3072,
|
18 |
+
"decoder_layerdrop": 0.0,
|
19 |
+
"decoder_layers": 12,
|
20 |
+
"decoder_start_token_id": 0,
|
21 |
+
"dropout": 0.1,
|
22 |
+
"encoder_attention_heads": 12,
|
23 |
+
"encoder_ffn_dim": 3072,
|
24 |
+
"encoder_layerdrop": 0.0,
|
25 |
+
"encoder_layers": 12,
|
26 |
+
"eos_token_id": 1,
|
27 |
+
"extra_pos_embeddings": 1,
|
28 |
+
"force_bos_token_to_be_generated": false,
|
29 |
+
"forced_eos_token_id": 1,
|
30 |
+
"gradient_checkpointing": false,
|
31 |
+
"id2label": {
|
32 |
+
"0": "LABEL_0",
|
33 |
+
"1": "LABEL_1",
|
34 |
+
"2": "LABEL_2"
|
35 |
+
},
|
36 |
+
"init_std": 0.02,
|
37 |
+
"is_encoder_decoder": true,
|
38 |
+
"label2id": {
|
39 |
+
"LABEL_0": 0,
|
40 |
+
"LABEL_1": 1,
|
41 |
+
"LABEL_2": 2
|
42 |
+
},
|
43 |
+
"length_penalty": 0.8,
|
44 |
+
"max_length": 16384,
|
45 |
+
"max_position_embeddings": 16384,
|
46 |
+
"model_type": "pegasus_x",
|
47 |
+
"normalize_before": true,
|
48 |
+
"normalize_embedding": false,
|
49 |
+
"num_beams": 8,
|
50 |
+
"num_global_tokens": 128,
|
51 |
+
"num_hidden_layers": 12,
|
52 |
+
"pad_token_id": 0,
|
53 |
+
"scale_embedding": true,
|
54 |
+
"stagger_local_blocks": true,
|
55 |
+
"static_position_embeddings": true,
|
56 |
+
"torch_dtype": "float32",
|
57 |
+
"transformers_version": "4.35.2",
|
58 |
+
"use_cache": true,
|
59 |
+
"vocab_size": 96103
|
60 |
+
}
|
embedding.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
|
8 |
+
|
9 |
+
def average_pool(last_hidden_states: Tensor,
|
10 |
+
attention_mask: Tensor) -> Tensor:
|
11 |
+
last_hidden = last_hidden_states.masked_fill(
|
12 |
+
~attention_mask[..., None].bool(), 0.0)
|
13 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
14 |
+
|
15 |
+
|
16 |
+
def encode_hf(input_texts: List[str], model_id: str = 'thenlper/gte-small',
|
17 |
+
prefix: str = ''):
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
19 |
+
model = AutoModel.from_pretrained(model_id).to('cuda')
|
20 |
+
input_texts = [prefix + input_text for input_text in input_texts]
|
21 |
+
# Tokenize the input texts
|
22 |
+
batch_dict = tokenizer(input_texts, padding=True,
|
23 |
+
truncation=True, return_tensors='pt').to('cuda')
|
24 |
+
outputs = model(**batch_dict)
|
25 |
+
embeddings = average_pool(outputs.last_hidden_state,
|
26 |
+
batch_dict['attention_mask'])
|
27 |
+
# normalize embeddings
|
28 |
+
embeddings = F.normalize(embeddings)
|
29 |
+
return embeddings
|
eval.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import string
|
3 |
+
|
4 |
+
import unicodedata
|
5 |
+
|
6 |
+
|
7 |
+
from evaluate import evaluator, QuestionAnsweringEvaluator
|
8 |
+
from datasets import load_dataset
|
9 |
+
|
10 |
+
|
11 |
+
def evaluate_dataset(id: str, subset: str, metric: str = 'squad_v2',
|
12 |
+
question_col: str = 'question', context_col: str = 'retrieved', predict_col: str = 'predicted',
|
13 |
+
id_col: str = 'question', label_col: str = 'answer', labeling: bool = True):
|
14 |
+
referee: QuestionAnsweringEvaluator = evaluator("question-answering")
|
15 |
+
referee.PIPELINE_KWARGS["handle_impossible_answer"] = True
|
16 |
+
|
17 |
+
# Dataset
|
18 |
+
dataset = load_dataset(id, subset)
|
19 |
+
dataset_list = list(dataset['train'])
|
20 |
+
metric_input, qa = referee.prepare_data(
|
21 |
+
dataset['train'], question_col, context_col, id_col, label_col)
|
22 |
+
|
23 |
+
# References
|
24 |
+
if labeling:
|
25 |
+
for i, reference in enumerate(metric_input['references']):
|
26 |
+
starts = [qa['context'][i].find(answer)
|
27 |
+
for answer in reference['answers']]
|
28 |
+
reference['answers'] = {
|
29 |
+
'answer_start': starts, 'text': reference['answers']}
|
30 |
+
|
31 |
+
# Prediction
|
32 |
+
metric_input['predictions'] = []
|
33 |
+
for row in dataset_list:
|
34 |
+
result = {
|
35 |
+
'prediction_text': row[predict_col], 'id': row[id_col]}
|
36 |
+
if metric == 'squad_v2':
|
37 |
+
result['no_answer_probability'] = 0.
|
38 |
+
metric_input['predictions'].append(result)
|
39 |
+
|
40 |
+
metric_module = referee.prepare_metric(metric)
|
41 |
+
results = referee.compute_metric(metric_module, metric_inputs=metric_input)
|
42 |
+
return results
|
43 |
+
|
44 |
+
|
45 |
+
def evaluate_dataset_manual(id: str, subset: str):
|
46 |
+
dataset = load_dataset(id, subset)
|
47 |
+
dataset_list = list(dataset['train'])
|
48 |
+
for row in dataset_list:
|
49 |
+
row['score'] = max([regex_match_score(row['predicted'], answer)
|
50 |
+
for answer in row['answer']])
|
51 |
+
score = sum([row['score'] for row in dataset_list]) / len(dataset_list)
|
52 |
+
return score
|
53 |
+
|
54 |
+
|
55 |
+
def normalize_answer(s):
|
56 |
+
"""Normalize answer."""
|
57 |
+
s = unicodedata.normalize("NFD", s)
|
58 |
+
|
59 |
+
def remove_articles(text):
|
60 |
+
return re.sub(r"\b(a|an|the)\b", " ", text)
|
61 |
+
|
62 |
+
def white_space_fix(text):
|
63 |
+
return " ".join(text.split())
|
64 |
+
|
65 |
+
def remove_punc(text):
|
66 |
+
exclude = set(string.punctuation)
|
67 |
+
return "".join(ch for ch in text if ch not in exclude)
|
68 |
+
|
69 |
+
def lower(text):
|
70 |
+
return text.lower()
|
71 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
72 |
+
|
73 |
+
|
74 |
+
def exact_match_score(prediction, ground_truth):
|
75 |
+
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
76 |
+
|
77 |
+
|
78 |
+
def regex_match_score(prediction, ground_truth):
|
79 |
+
try:
|
80 |
+
regex = re.compile(ground_truth,
|
81 |
+
flags=re.IGNORECASE + re.UNICODE + re.MULTILINE)
|
82 |
+
return regex.match(prediction) is not None
|
83 |
+
except re.error:
|
84 |
+
return False
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3362987f673771c822ed03171d5e8ad806008c8f7057b4ed4ad893506208bd8b
|
3 |
+
size 1089213696
|
reader.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TypedDict, List, Dict
|
2 |
+
from re import sub
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, DPRReaderTokenizer, DPRReader, logging
|
7 |
+
from transformers import QuestionAnsweringPipeline
|
8 |
+
|
9 |
+
max_answer_len = 8
|
10 |
+
logging.set_verbosity_error()
|
11 |
+
|
12 |
+
|
13 |
+
class AnswerInfo(TypedDict):
|
14 |
+
score: float
|
15 |
+
start: int
|
16 |
+
end: int
|
17 |
+
answer: str
|
18 |
+
|
19 |
+
|
20 |
+
@torch.inference_mode()
|
21 |
+
def ask_reader(tokenizer: AutoTokenizer, model: AutoModelForQuestionAnswering,
|
22 |
+
questions: List[str], ctxs: List[str]) -> List[AnswerInfo]:
|
23 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
24 |
+
pipeline = QuestionAnsweringPipeline(
|
25 |
+
model=model, tokenizer=tokenizer, device='cuda', max_answer_len=max_answer_len)
|
26 |
+
answer_infos: List[AnswerInfo] = pipeline(
|
27 |
+
question=questions, context=ctxs)
|
28 |
+
for answer_info in answer_infos:
|
29 |
+
answer_info['answer'] = sub(r'[.\(\)"\',]', '', answer_info['answer'])
|
30 |
+
return answer_infos
|
31 |
+
|
32 |
+
|
33 |
+
def get_reader(model_id="mrm8488/longformer-base-4096-finetuned-squadv2"):
|
34 |
+
tokenizer = DPRReaderTokenizer.from_pretrained(model_id)
|
35 |
+
model = DPRReader.from_pretrained(model_id).to(0)
|
36 |
+
return tokenizer, model
|
runs/Nov22_13-17-25_workspace-yt5idya013hw-0/events.out.tfevents.1700659046.workspace-yt5idya013hw-0.37370.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15b5883324cca5bf9205d794de47d7dc248390a83a14caed3ef39369e01e11d5
|
3 |
+
size 5134
|
runs/Nov22_13-18-19_workspace-yt5idya013hw-0/events.out.tfevents.1700659101.workspace-yt5idya013hw-0.38133.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e9925734784a947ec34d7a401f25b29de941f4ec0f0a8d818519b55e0e7cb43
|
3 |
+
size 5134
|
runs/Nov22_13-19-06_workspace-yt5idya013hw-0/events.out.tfevents.1700659147.workspace-yt5idya013hw-0.39864.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e00909093fc8ce8d5aebb7c0cc56c60bb9e102f191c85fe000b68ad68fff7b33
|
3 |
+
size 5134
|
runs/Nov22_13-20-04_workspace-yt5idya013hw-0/events.out.tfevents.1700659206.workspace-yt5idya013hw-0.42035.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7654a3da47dda91d122a6906099f39841bb090fb755d488709dbe4af6e42594
|
3 |
+
size 5133
|
runs/Nov22_13-20-53_workspace-yt5idya013hw-0/events.out.tfevents.1700659254.workspace-yt5idya013hw-0.43999.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a282925fc0143388c39c4033a201f80618014ff219aaa55937728537b44048c4
|
3 |
+
size 5132
|
runs/Nov22_13-21-31_workspace-yt5idya013hw-0/events.out.tfevents.1700659293.workspace-yt5idya013hw-0.45721.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efee85fdb76a6a0dd25ae9f7f4aa292a3fd203f6b403ee80f1cb58e432acba15
|
3 |
+
size 5132
|
runs/Nov22_13-22-38_workspace-yt5idya013hw-0/events.out.tfevents.1700659361.workspace-yt5idya013hw-0.48336.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75c449e08bda4a6ae2fce4fbb586fb91d45ec3905e87451017be5b5c5b53a3c0
|
3 |
+
size 5132
|
runs/Nov22_13-34-19_workspace-yt5idya013hw-0/events.out.tfevents.1700660060.workspace-yt5idya013hw-0.67705.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6adab62f08cee5a5217d202f30df47170a004d6364d8b8bb7e7c2b58a3ab9ee7
|
3 |
+
size 5289
|
special_tokens_map.json
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<mask_1>",
|
4 |
+
"<unk_2>",
|
5 |
+
"<unk_3>",
|
6 |
+
"<unk_4>",
|
7 |
+
"<unk_5>",
|
8 |
+
"<unk_6>",
|
9 |
+
"<unk_7>",
|
10 |
+
"<unk_8>",
|
11 |
+
"<unk_9>",
|
12 |
+
"<unk_10>",
|
13 |
+
"<unk_11>",
|
14 |
+
"<unk_12>",
|
15 |
+
"<unk_13>",
|
16 |
+
"<unk_14>",
|
17 |
+
"<unk_15>",
|
18 |
+
"<unk_16>",
|
19 |
+
"<unk_17>",
|
20 |
+
"<unk_18>",
|
21 |
+
"<unk_19>",
|
22 |
+
"<unk_20>",
|
23 |
+
"<unk_21>",
|
24 |
+
"<unk_22>",
|
25 |
+
"<unk_23>",
|
26 |
+
"<unk_24>",
|
27 |
+
"<unk_25>",
|
28 |
+
"<unk_26>",
|
29 |
+
"<unk_27>",
|
30 |
+
"<unk_28>",
|
31 |
+
"<unk_29>",
|
32 |
+
"<unk_30>",
|
33 |
+
"<unk_31>",
|
34 |
+
"<unk_32>",
|
35 |
+
"<unk_33>",
|
36 |
+
"<unk_34>",
|
37 |
+
"<unk_35>",
|
38 |
+
"<unk_36>",
|
39 |
+
"<unk_37>",
|
40 |
+
"<unk_38>",
|
41 |
+
"<unk_39>",
|
42 |
+
"<unk_40>",
|
43 |
+
"<unk_41>",
|
44 |
+
"<unk_42>",
|
45 |
+
"<unk_43>",
|
46 |
+
"<unk_44>",
|
47 |
+
"<unk_45>",
|
48 |
+
"<unk_46>",
|
49 |
+
"<unk_47>",
|
50 |
+
"<unk_48>",
|
51 |
+
"<unk_49>",
|
52 |
+
"<unk_50>",
|
53 |
+
"<unk_51>",
|
54 |
+
"<unk_52>",
|
55 |
+
"<unk_53>",
|
56 |
+
"<unk_54>",
|
57 |
+
"<unk_55>",
|
58 |
+
"<unk_56>",
|
59 |
+
"<unk_57>",
|
60 |
+
"<unk_58>",
|
61 |
+
"<unk_59>",
|
62 |
+
"<unk_60>",
|
63 |
+
"<unk_61>",
|
64 |
+
"<unk_62>",
|
65 |
+
"<unk_63>",
|
66 |
+
"<unk_64>",
|
67 |
+
"<unk_65>",
|
68 |
+
"<unk_66>",
|
69 |
+
"<unk_67>",
|
70 |
+
"<unk_68>",
|
71 |
+
"<unk_69>",
|
72 |
+
"<unk_70>",
|
73 |
+
"<unk_71>",
|
74 |
+
"<unk_72>",
|
75 |
+
"<unk_73>",
|
76 |
+
"<unk_74>",
|
77 |
+
"<unk_75>",
|
78 |
+
"<unk_76>",
|
79 |
+
"<unk_77>",
|
80 |
+
"<unk_78>",
|
81 |
+
"<unk_79>",
|
82 |
+
"<unk_80>",
|
83 |
+
"<unk_81>",
|
84 |
+
"<unk_82>",
|
85 |
+
"<unk_83>",
|
86 |
+
"<unk_84>",
|
87 |
+
"<unk_85>",
|
88 |
+
"<unk_86>",
|
89 |
+
"<unk_87>",
|
90 |
+
"<unk_88>",
|
91 |
+
"<unk_89>",
|
92 |
+
"<unk_90>",
|
93 |
+
"<unk_91>",
|
94 |
+
"<unk_92>",
|
95 |
+
"<unk_93>",
|
96 |
+
"<unk_94>",
|
97 |
+
"<unk_95>",
|
98 |
+
"<unk_96>",
|
99 |
+
"<unk_97>",
|
100 |
+
"<unk_98>",
|
101 |
+
"<unk_99>",
|
102 |
+
"<unk_100>",
|
103 |
+
"<unk_101>",
|
104 |
+
"<unk_102>"
|
105 |
+
],
|
106 |
+
"eos_token": "</s>",
|
107 |
+
"mask_token": "<mask_2>",
|
108 |
+
"pad_token": "<pad>",
|
109 |
+
"unk_token": "<unk>"
|
110 |
+
}
|
summarizer.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from transformers import AutoTokenizer, BartForConditionalGeneration, BartTokenizerFast
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def summarize_text(tokenizer: BartTokenizerFast, model: BartForConditionalGeneration,
|
7 |
+
input_texts: List[str]):
|
8 |
+
inputs = tokenizer(input_texts, padding=True,
|
9 |
+
return_tensors='pt', truncation=True).to(1)
|
10 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
11 |
+
summary_ids = model.generate(inputs["input_ids"])
|
12 |
+
summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True,
|
13 |
+
clean_up_tokenization_spaces=False, batch_size=len(input_texts))
|
14 |
+
return summaries
|
15 |
+
|
16 |
+
|
17 |
+
def get_summarizer(model_id="ccdv/lsg-bart-base-4096-multinews") -> Tuple[BartTokenizerFast, BartForConditionalGeneration]:
|
18 |
+
tokenizer = BartTokenizerFast.from_pretrained(model_id)
|
19 |
+
model = BartForConditionalGeneration.from_pretrained(model_id).to(1)
|
20 |
+
model = torch.compile(model)
|
21 |
+
return tokenizer, model
|
22 |
+
|
23 |
+
|
24 |
+
# OpenAI reader
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,967 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "</s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<mask_1>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<mask_2>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "<unk_2>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"5": {
|
44 |
+
"content": "<unk_3>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"6": {
|
52 |
+
"content": "<unk_4>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"7": {
|
60 |
+
"content": "<unk_5>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"8": {
|
68 |
+
"content": "<unk_6>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"9": {
|
76 |
+
"content": "<unk_7>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"10": {
|
84 |
+
"content": "<unk_8>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"11": {
|
92 |
+
"content": "<unk_9>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"12": {
|
100 |
+
"content": "<unk_10>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"13": {
|
108 |
+
"content": "<unk_11>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"14": {
|
116 |
+
"content": "<unk_12>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"15": {
|
124 |
+
"content": "<unk_13>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"16": {
|
132 |
+
"content": "<unk_14>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"17": {
|
140 |
+
"content": "<unk_15>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"18": {
|
148 |
+
"content": "<unk_16>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"19": {
|
156 |
+
"content": "<unk_17>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"20": {
|
164 |
+
"content": "<unk_18>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"21": {
|
172 |
+
"content": "<unk_19>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"22": {
|
180 |
+
"content": "<unk_20>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"23": {
|
188 |
+
"content": "<unk_21>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"24": {
|
196 |
+
"content": "<unk_22>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"25": {
|
204 |
+
"content": "<unk_23>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"26": {
|
212 |
+
"content": "<unk_24>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"27": {
|
220 |
+
"content": "<unk_25>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"28": {
|
228 |
+
"content": "<unk_26>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"29": {
|
236 |
+
"content": "<unk_27>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"30": {
|
244 |
+
"content": "<unk_28>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"31": {
|
252 |
+
"content": "<unk_29>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"32": {
|
260 |
+
"content": "<unk_30>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"33": {
|
268 |
+
"content": "<unk_31>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"34": {
|
276 |
+
"content": "<unk_32>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"35": {
|
284 |
+
"content": "<unk_33>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"36": {
|
292 |
+
"content": "<unk_34>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"37": {
|
300 |
+
"content": "<unk_35>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"38": {
|
308 |
+
"content": "<unk_36>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"39": {
|
316 |
+
"content": "<unk_37>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"40": {
|
324 |
+
"content": "<unk_38>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"41": {
|
332 |
+
"content": "<unk_39>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"42": {
|
340 |
+
"content": "<unk_40>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"43": {
|
348 |
+
"content": "<unk_41>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"44": {
|
356 |
+
"content": "<unk_42>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"45": {
|
364 |
+
"content": "<unk_43>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"46": {
|
372 |
+
"content": "<unk_44>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"47": {
|
380 |
+
"content": "<unk_45>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"48": {
|
388 |
+
"content": "<unk_46>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"49": {
|
396 |
+
"content": "<unk_47>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"50": {
|
404 |
+
"content": "<unk_48>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"51": {
|
412 |
+
"content": "<unk_49>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"52": {
|
420 |
+
"content": "<unk_50>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"53": {
|
428 |
+
"content": "<unk_51>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"54": {
|
436 |
+
"content": "<unk_52>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"55": {
|
444 |
+
"content": "<unk_53>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"56": {
|
452 |
+
"content": "<unk_54>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"57": {
|
460 |
+
"content": "<unk_55>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"58": {
|
468 |
+
"content": "<unk_56>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"59": {
|
476 |
+
"content": "<unk_57>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"60": {
|
484 |
+
"content": "<unk_58>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"61": {
|
492 |
+
"content": "<unk_59>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"62": {
|
500 |
+
"content": "<unk_60>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"63": {
|
508 |
+
"content": "<unk_61>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"64": {
|
516 |
+
"content": "<unk_62>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"65": {
|
524 |
+
"content": "<unk_63>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"66": {
|
532 |
+
"content": "<unk_64>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"67": {
|
540 |
+
"content": "<unk_65>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"68": {
|
548 |
+
"content": "<unk_66>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"69": {
|
556 |
+
"content": "<unk_67>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"70": {
|
564 |
+
"content": "<unk_68>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"71": {
|
572 |
+
"content": "<unk_69>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"72": {
|
580 |
+
"content": "<unk_70>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"73": {
|
588 |
+
"content": "<unk_71>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"74": {
|
596 |
+
"content": "<unk_72>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"75": {
|
604 |
+
"content": "<unk_73>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"76": {
|
612 |
+
"content": "<unk_74>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"77": {
|
620 |
+
"content": "<unk_75>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"78": {
|
628 |
+
"content": "<unk_76>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"79": {
|
636 |
+
"content": "<unk_77>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"80": {
|
644 |
+
"content": "<unk_78>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"81": {
|
652 |
+
"content": "<unk_79>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"82": {
|
660 |
+
"content": "<unk_80>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"83": {
|
668 |
+
"content": "<unk_81>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"84": {
|
676 |
+
"content": "<unk_82>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"85": {
|
684 |
+
"content": "<unk_83>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"86": {
|
692 |
+
"content": "<unk_84>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"87": {
|
700 |
+
"content": "<unk_85>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"88": {
|
708 |
+
"content": "<unk_86>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"89": {
|
716 |
+
"content": "<unk_87>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"90": {
|
724 |
+
"content": "<unk_88>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"91": {
|
732 |
+
"content": "<unk_89>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"92": {
|
740 |
+
"content": "<unk_90>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"93": {
|
748 |
+
"content": "<unk_91>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"94": {
|
756 |
+
"content": "<unk_92>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"95": {
|
764 |
+
"content": "<unk_93>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"96": {
|
772 |
+
"content": "<unk_94>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"97": {
|
780 |
+
"content": "<unk_95>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"98": {
|
788 |
+
"content": "<unk_96>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"99": {
|
796 |
+
"content": "<unk_97>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"100": {
|
804 |
+
"content": "<unk_98>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"101": {
|
812 |
+
"content": "<unk_99>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"102": {
|
820 |
+
"content": "<unk_100>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"103": {
|
828 |
+
"content": "<unk_101>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"104": {
|
836 |
+
"content": "<unk_102>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"105": {
|
844 |
+
"content": "<unk>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
}
|
851 |
+
},
|
852 |
+
"additional_special_tokens": [
|
853 |
+
"<mask_1>",
|
854 |
+
"<unk_2>",
|
855 |
+
"<unk_3>",
|
856 |
+
"<unk_4>",
|
857 |
+
"<unk_5>",
|
858 |
+
"<unk_6>",
|
859 |
+
"<unk_7>",
|
860 |
+
"<unk_8>",
|
861 |
+
"<unk_9>",
|
862 |
+
"<unk_10>",
|
863 |
+
"<unk_11>",
|
864 |
+
"<unk_12>",
|
865 |
+
"<unk_13>",
|
866 |
+
"<unk_14>",
|
867 |
+
"<unk_15>",
|
868 |
+
"<unk_16>",
|
869 |
+
"<unk_17>",
|
870 |
+
"<unk_18>",
|
871 |
+
"<unk_19>",
|
872 |
+
"<unk_20>",
|
873 |
+
"<unk_21>",
|
874 |
+
"<unk_22>",
|
875 |
+
"<unk_23>",
|
876 |
+
"<unk_24>",
|
877 |
+
"<unk_25>",
|
878 |
+
"<unk_26>",
|
879 |
+
"<unk_27>",
|
880 |
+
"<unk_28>",
|
881 |
+
"<unk_29>",
|
882 |
+
"<unk_30>",
|
883 |
+
"<unk_31>",
|
884 |
+
"<unk_32>",
|
885 |
+
"<unk_33>",
|
886 |
+
"<unk_34>",
|
887 |
+
"<unk_35>",
|
888 |
+
"<unk_36>",
|
889 |
+
"<unk_37>",
|
890 |
+
"<unk_38>",
|
891 |
+
"<unk_39>",
|
892 |
+
"<unk_40>",
|
893 |
+
"<unk_41>",
|
894 |
+
"<unk_42>",
|
895 |
+
"<unk_43>",
|
896 |
+
"<unk_44>",
|
897 |
+
"<unk_45>",
|
898 |
+
"<unk_46>",
|
899 |
+
"<unk_47>",
|
900 |
+
"<unk_48>",
|
901 |
+
"<unk_49>",
|
902 |
+
"<unk_50>",
|
903 |
+
"<unk_51>",
|
904 |
+
"<unk_52>",
|
905 |
+
"<unk_53>",
|
906 |
+
"<unk_54>",
|
907 |
+
"<unk_55>",
|
908 |
+
"<unk_56>",
|
909 |
+
"<unk_57>",
|
910 |
+
"<unk_58>",
|
911 |
+
"<unk_59>",
|
912 |
+
"<unk_60>",
|
913 |
+
"<unk_61>",
|
914 |
+
"<unk_62>",
|
915 |
+
"<unk_63>",
|
916 |
+
"<unk_64>",
|
917 |
+
"<unk_65>",
|
918 |
+
"<unk_66>",
|
919 |
+
"<unk_67>",
|
920 |
+
"<unk_68>",
|
921 |
+
"<unk_69>",
|
922 |
+
"<unk_70>",
|
923 |
+
"<unk_71>",
|
924 |
+
"<unk_72>",
|
925 |
+
"<unk_73>",
|
926 |
+
"<unk_74>",
|
927 |
+
"<unk_75>",
|
928 |
+
"<unk_76>",
|
929 |
+
"<unk_77>",
|
930 |
+
"<unk_78>",
|
931 |
+
"<unk_79>",
|
932 |
+
"<unk_80>",
|
933 |
+
"<unk_81>",
|
934 |
+
"<unk_82>",
|
935 |
+
"<unk_83>",
|
936 |
+
"<unk_84>",
|
937 |
+
"<unk_85>",
|
938 |
+
"<unk_86>",
|
939 |
+
"<unk_87>",
|
940 |
+
"<unk_88>",
|
941 |
+
"<unk_89>",
|
942 |
+
"<unk_90>",
|
943 |
+
"<unk_91>",
|
944 |
+
"<unk_92>",
|
945 |
+
"<unk_93>",
|
946 |
+
"<unk_94>",
|
947 |
+
"<unk_95>",
|
948 |
+
"<unk_96>",
|
949 |
+
"<unk_97>",
|
950 |
+
"<unk_98>",
|
951 |
+
"<unk_99>",
|
952 |
+
"<unk_100>",
|
953 |
+
"<unk_101>",
|
954 |
+
"<unk_102>"
|
955 |
+
],
|
956 |
+
"clean_up_tokenization_spaces": true,
|
957 |
+
"eos_token": "</s>",
|
958 |
+
"full_tokenizer_file": null,
|
959 |
+
"mask_token": "<mask_2>",
|
960 |
+
"mask_token_sent": "<mask_1>",
|
961 |
+
"model_max_length": 1024,
|
962 |
+
"offset": 103,
|
963 |
+
"pad_token": "<pad>",
|
964 |
+
"sp_model_kwargs": {},
|
965 |
+
"tokenizer_class": "PegasusTokenizer",
|
966 |
+
"unk_token": "<unk>"
|
967 |
+
}
|
train.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer, DataCollatorForSeq2Seq
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from huggingface_hub import login
|
7 |
+
|
8 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
9 |
+
torch.backends.cudnn.allow_tf32 = True
|
10 |
+
|
11 |
+
|
12 |
+
def preprocesser(tokenizer):
|
13 |
+
def preprocess_function(examples):
|
14 |
+
inputs = [f"{examples['question_text'][i]}\n{doc}" for i,
|
15 |
+
doc in enumerate(examples["document_text"])]
|
16 |
+
model_inputs = tokenizer(inputs, truncation=True)
|
17 |
+
labels = tokenizer(
|
18 |
+
text_target=examples["summarization_text"], truncation=True)
|
19 |
+
model_inputs["labels"] = labels["input_ids"]
|
20 |
+
return model_inputs
|
21 |
+
return preprocess_function
|
22 |
+
|
23 |
+
|
24 |
+
def training(output='resrer', dataset_id='seonglae/resrer-nq', checkpoint='google/pegasus-x-base',
|
25 |
+
owner='seonglae', token=None):
|
26 |
+
if token is not None:
|
27 |
+
login(token=token)
|
28 |
+
# Load model
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
30 |
+
|
31 |
+
# Load dataset
|
32 |
+
dataset = load_dataset(dataset_id, split='train')
|
33 |
+
splited_dataset = dataset.train_test_split(test_size=0.2)
|
34 |
+
tokenized_dataset = splited_dataset.map(
|
35 |
+
preprocesser(tokenizer), batched=True)
|
36 |
+
print(tokenized_dataset["train"][0])
|
37 |
+
|
38 |
+
# Train
|
39 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
40 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
|
41 |
+
training_args = Seq2SeqTrainingArguments(
|
42 |
+
output_dir=output,
|
43 |
+
evaluation_strategy="epoch",
|
44 |
+
learning_rate=2e-5,
|
45 |
+
per_device_train_batch_size=2,
|
46 |
+
optim='adamw_hf',
|
47 |
+
weight_decay=0.01,
|
48 |
+
save_total_limit=3,
|
49 |
+
num_train_epochs=4,
|
50 |
+
push_to_hub=True,
|
51 |
+
)
|
52 |
+
trainer = Seq2SeqTrainer(
|
53 |
+
model=model,
|
54 |
+
args=training_args,
|
55 |
+
train_dataset=tokenized_dataset["train"],
|
56 |
+
eval_dataset=tokenized_dataset["test"],
|
57 |
+
tokenizer=tokenizer,
|
58 |
+
data_collator=data_collator,
|
59 |
+
)
|
60 |
+
trainer.train()
|
61 |
+
|
62 |
+
# Push
|
63 |
+
if token is not None:
|
64 |
+
tokenizer.push_to_hub(f"{owner}/{output}", token=token)
|
65 |
+
model.push_to_hub(f"{owner}/{output}", token=token)
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:685886fd200260152b29db695575ac8dd0381c487c29a959991bdb5afe90a216
|
3 |
+
size 4728
|
utils.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TypedDict, List
|
2 |
+
from tiktoken import Encoding
|
3 |
+
|
4 |
+
|
5 |
+
class Row(TypedDict):
|
6 |
+
id: str
|
7 |
+
title: str
|
8 |
+
url: str
|
9 |
+
text: str
|
10 |
+
|
11 |
+
|
12 |
+
def split_token(encoder: Encoding, rows: List[Row], input_texts: List[str], split: int = 512) -> List[Row]:
|
13 |
+
dict_list: List[Row] = []
|
14 |
+
|
15 |
+
# Batch documents
|
16 |
+
for i, text_tokenes in enumerate(encoder.encode_batch(input_texts)):
|
17 |
+
row = rows[i]
|
18 |
+
passages_count = int((len(text_tokenes) - 1) / split)
|
19 |
+
|
20 |
+
# Passages from start
|
21 |
+
for i in range(passages_count):
|
22 |
+
tokens = text_tokenes[i * split:(i + 1) * split]
|
23 |
+
for i in range(passages_count):
|
24 |
+
tokens = text_tokenes[i * split:(i + 1) * split]
|
25 |
+
|
26 |
+
# Append tokens until meet whitespace
|
27 |
+
for token in text_tokenes[(i + 1) * split:]:
|
28 |
+
if not encoder.decode_single_token_bytes(token).startswith(b' '):
|
29 |
+
tokens.append(token)
|
30 |
+
else:
|
31 |
+
break
|
32 |
+
|
33 |
+
# Unshift tokens until meet whitespace
|
34 |
+
if not encoder.decode_single_token_bytes(text_tokenes[i * split]).startswith(b' '):
|
35 |
+
for token in reversed(text_tokenes[:i * split]):
|
36 |
+
if not encoder.decode_single_token_bytes(token).startswith(b' '):
|
37 |
+
tokens.insert(0, token)
|
38 |
+
else:
|
39 |
+
tokens.insert(0, token)
|
40 |
+
break
|
41 |
+
dict_list.append({'id': f"{row['id']}_{i}", 'title': row['title'], 'url': row['url'],
|
42 |
+
'text': encoder.decode(tokens)})
|
43 |
+
|
44 |
+
# Passages from end
|
45 |
+
tokens = text_tokenes[-split:]
|
46 |
+
if not encoder.decode_single_token_bytes(text_tokenes[0]).startswith(b' '):
|
47 |
+
|
48 |
+
# Unshift tokens until meet whitespace
|
49 |
+
for token in reversed(text_tokenes[:-split]):
|
50 |
+
if not encoder.decode_single_token_bytes(token).startswith(b' '):
|
51 |
+
tokens.insert(0, token)
|
52 |
+
else:
|
53 |
+
tokens.insert(0, token)
|
54 |
+
break
|
55 |
+
dict_list.append({'id': f"{row['id']}_{passages_count}", 'title': row['title'], 'url': row['url'],
|
56 |
+
'text': encoder.decode(tokens)})
|
57 |
+
return dict_list
|