File size: 4,159 Bytes
df534d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---

library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers

---


# sentence-transformers-testing/stsb-bert-tiny-safetensors

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```

pip install -U sentence-transformers

```

Then you can use the model like this:

```python

from sentence_transformers import SentenceTransformer

sentences = ["This is an example sentence", "Each sentence is converted"]



model = SentenceTransformer('sentence-transformers-testing/stsb-bert-tiny-safetensors')

embeddings = model.encode(sentences)

print(embeddings)

```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python

from transformers import AutoTokenizer, AutoModel

import torch





#Mean Pooling - Take attention mask into account for correct averaging

def mean_pooling(model_output, attention_mask):

    token_embeddings = model_output[0] #First element of model_output contains all token embeddings

    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()

    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)





# Sentences we want sentence embeddings for

sentences = ['This is an example sentence', 'Each sentence is converted']



# Load model from HuggingFace Hub

tokenizer = AutoTokenizer.from_pretrained('sentence-transformers-testing/stsb-bert-tiny-safetensors')

model = AutoModel.from_pretrained('sentence-transformers-testing/stsb-bert-tiny-safetensors')



# Tokenize sentences

encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')



# Compute token embeddings

with torch.no_grad():

    model_output = model(**encoded_input)



# Perform pooling. In this case, mean pooling.

sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])



print("Sentence embeddings:")

print(sentence_embeddings)

```



## Evaluation Results

<!--- Describe how your model was evaluated -->

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers-testing/stsb-bert-tiny-safetensors)


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
```

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

```

**Loss**:

`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` 

Parameters of the fit()-Method:
```

{

    "epochs": 10,

    "evaluation_steps": 1000,

    "evaluator": "NoneType",

    "max_grad_norm": 1,

    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",

    "optimizer_params": {

        "lr": 8e-05

    },

    "scheduler": "WarmupLinear",

    "steps_per_epoch": null,

    "warmup_steps": 36,

    "weight_decay": 0.01

}

```


## Full Model Architecture
```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})

)

```

## Citing & Authors

<!--- Describe where people can find more information -->