File size: 67,617 Bytes
d0122d6 f2b5359 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3012496
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers-testing/stsb-bert-tiny-safetensors
widget:
- source_sentence: how to sign legal documents as power of attorney?
sentences:
- 'After the principal''s name, write “by” and then sign your own name. Under or
after the signature line, indicate your status as POA by including any of the
following identifiers: as POA, as Agent, as Attorney in Fact or as Power of Attorney.'
- '[''From the Home screen, swipe left to Apps.'', ''Tap Transfer my Data.'', ''Tap
Menu (...).'', ''Tap Export to SD card.'']'
- Ginger Dank Nugs (Grape) - 350mg. Feast your eyes on these unique and striking
gourmet chocolates; Coco Nugs created by Ginger Dank. Crafted to resemble perfect
nugs of cannabis, each of the 10 buds contains 35mg of THC. ... This is a perfect
product for both cannabis and chocolate lovers, who appreciate a little twist.
- source_sentence: how to delete vdom in fortigate?
sentences:
- Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now successfully
removed from the configuration.
- 'Both combination birth control pills and progestin-only pills may cause headaches
as a side effect. Additional side effects of birth control pills may include:
breast tenderness. nausea.'
- White cheese tends to show imperfections more readily and as consumers got more
used to yellow-orange cheese, it became an expected option. Today, many cheddars
are yellow. While most cheesemakers use annatto, some use an artificial coloring
agent instead, according to Sachs.
- source_sentence: where are earthquakes most likely to occur on earth?
sentences:
- Zelle in the Bank of the America app is a fast, safe, and easy way to send and
receive money with family and friends who have a bank account in the U.S., all
with no fees. Money moves in minutes directly between accounts that are already
enrolled with Zelle.
- It takes about 3 days for a spacecraft to reach the Moon. During that time a spacecraft
travels at least 240,000 miles (386,400 kilometers) which is the distance between
Earth and the Moon.
- Most earthquakes occur along the edge of the oceanic and continental plates. The
earth's crust (the outer layer of the planet) is made up of several pieces, called
plates. The plates under the oceans are called oceanic plates and the rest are
continental plates.
- source_sentence: fix iphone is disabled connect to itunes without itunes?
sentences:
- To fix a disabled iPhone or iPad without iTunes, you have to erase your device.
Click on the "Erase iPhone" option and confirm your selection. Wait for a while
as the "Find My iPhone" feature will remotely erase your iOS device. Needless
to say, it will also disable its lock.
- How Māui brought fire to the world. One evening, after eating a hearty meal, Māui
lay beside his fire staring into the flames. ... In the middle of the night, while
everyone was sleeping, Māui went from village to village and extinguished all
the fires until not a single fire burned in the world.
- Angry Orchard makes a variety of year-round craft cider styles, including Angry
Orchard Crisp Apple, a fruit-forward hard cider that balances the sweetness of
culinary apples with dryness and bright acidity of bittersweet apples for a complex,
refreshing taste.
- source_sentence: how to reverse a video on tiktok that's not yours?
sentences:
- '[''Tap "Effects" at the bottom of your screen — it\''s an icon that looks like
a clock. Open the Effects menu. ... '', ''At the end of the new list that appears,
tap "Time." Select "Time" at the end. ... '', ''Select "Reverse" — you\''ll then
see a preview of your new, reversed video appear on the screen.'']'
- Franchise Facts Poke Bar has a franchise fee of up to $30,000, with a total initial
investment range of $157,800 to $438,000. The initial cost of a franchise includes
several fees -- Unlock this franchise to better understand the costs such as training
and territory fees.
- Relative age is the age of a rock layer (or the fossils it contains) compared
to other layers. It can be determined by looking at the position of rock layers.
Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can
be determined by using radiometric dating.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
emissions: 9.679189270737199
energy_consumed: 0.024901310697493708
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.15
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: stsb-bert-tiny adapter finetuned on GooAQ pairs
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: cosine_accuracy@1
value: 0.14
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.26
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.38
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.14
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07999999999999999
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05600000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.056666666666666664
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.08666666666666668
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.11166666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.17833333333333332
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1412311142763055
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19938095238095235
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.11363345611144926
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: cosine_accuracy@1
value: 0.42
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.62
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.72
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.86
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.42
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.34
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.344
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.29
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.02634308391586433
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.06038926804951766
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.10265977040056268
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.19610280190566398
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.34151812101104584
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5504126984126985
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21133731615809154
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: cosine_accuracy@1
value: 0.12
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.18
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.22
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.36
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.05999999999999999
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.044000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.036000000000000004
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.18
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.22
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.34
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.21218661613500586
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.17491269841269838
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.18857101300669993
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: cosine_accuracy@1
value: 0.06
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.28
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.04
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04800000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.032
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.044000000000000004
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.06199999999999999
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.12488888888888887
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.15574603174603174
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.10395695406287388
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.10821428571428571
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.08041090092126037
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: cosine_accuracy@1
value: 0.36
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.52
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.54
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.62
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.36
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.20666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07800000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.31
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.35
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.39
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3504958855767756
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4476349206349205
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.29308037158200173
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.06
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.36
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.064
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.036000000000000004
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.26
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.32
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.36
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.21417075898440763
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.16666666666666663
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.19159156983842277
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: cosine_accuracy@1
value: 0.2
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.44
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09600000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.00377949106046741
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.007274949456892388
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.012714784638321257
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.019303285579015287
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.09870502263453415
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2538809523809524
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.018928657854150332
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.08
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.18
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.42
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.042
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.17
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.19
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2051878697694875
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1506904761904762
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.16101738947158584
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.94
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.22399999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.11799999999999997
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.624
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7719999999999999
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.866
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8993333333333333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7992844609162323
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7798333333333335
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7635205205527187
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: cosine_accuracy@1
value: 0.18
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09200000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.066
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.036000000000000004
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.07466666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.09466666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.13466666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1348403477257659
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.24209523809523809
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.10255365352032365
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: cosine_accuracy@1
value: 0.08
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06400000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.26
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.32
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2375425714519515
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1856666666666667
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1985205474177431
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: cosine_accuracy@1
value: 0.08
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.32
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.064
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.034
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.195
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.28
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.19370675821369307
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.16466666666666668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1653693334513147
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: cosine_accuracy@1
value: 0.20408163265306123
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5102040816326531
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7551020408163265
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8775510204081632
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.20408163265306123
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25170068027210885
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.25306122448979596
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.24489795918367346
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.014397370082893721
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.04876234248655414
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0792610922160282
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.14648888406884147
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2485959675297849
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4082118561710398
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.16376385142142616
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.20646781789638935
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.33924646781789636
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.41039246467817886
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5121193092621665
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.20646781789638935
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1419256933542648
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11762009419152278
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08822291993720567
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10809127782506864
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.19128922256356135
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2362967591905488
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.30153648743329886
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25241711140675877
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2947898009020458
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2040229677928606
name: Cosine Map@100
---
# stsb-bert-tiny adapter finetuned on GooAQ pairs
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers-testing/stsb-bert-tiny-safetensors](https://huggingface.co/sentence-transformers-testing/stsb-bert-tiny-safetensors) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model was trained using [train_script.py](train_script.py).
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers-testing/stsb-bert-tiny-safetensors](https://huggingface.co/sentence-transformers-testing/stsb-bert-tiny-safetensors) <!-- at revision f3cb857cba53019a20df283396bcca179cf051a4 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 128 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-lora")
# Run inference
sentences = [
"how to reverse a video on tiktok that's not yours?",
'[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']',
'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 128]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| cosine_accuracy@1 | 0.14 | 0.42 | 0.12 | 0.06 | 0.36 | 0.06 | 0.2 | 0.08 | 0.7 | 0.18 | 0.08 | 0.08 | 0.2041 |
| cosine_accuracy@3 | 0.22 | 0.62 | 0.18 | 0.1 | 0.52 | 0.26 | 0.26 | 0.18 | 0.82 | 0.26 | 0.26 | 0.22 | 0.5102 |
| cosine_accuracy@5 | 0.26 | 0.72 | 0.22 | 0.2 | 0.54 | 0.32 | 0.3 | 0.2 | 0.88 | 0.32 | 0.32 | 0.3 | 0.7551 |
| cosine_accuracy@10 | 0.38 | 0.86 | 0.36 | 0.28 | 0.62 | 0.36 | 0.44 | 0.42 | 0.94 | 0.4 | 0.4 | 0.32 | 0.8776 |
| cosine_precision@1 | 0.14 | 0.42 | 0.12 | 0.06 | 0.36 | 0.06 | 0.2 | 0.08 | 0.7 | 0.18 | 0.08 | 0.08 | 0.2041 |
| cosine_precision@3 | 0.08 | 0.34 | 0.06 | 0.04 | 0.2067 | 0.0867 | 0.12 | 0.06 | 0.32 | 0.12 | 0.0867 | 0.0733 | 0.2517 |
| cosine_precision@5 | 0.056 | 0.344 | 0.044 | 0.048 | 0.14 | 0.064 | 0.096 | 0.04 | 0.224 | 0.092 | 0.064 | 0.064 | 0.2531 |
| cosine_precision@10 | 0.05 | 0.29 | 0.036 | 0.032 | 0.078 | 0.036 | 0.08 | 0.042 | 0.118 | 0.066 | 0.04 | 0.034 | 0.2449 |
| cosine_recall@1 | 0.0567 | 0.0263 | 0.12 | 0.044 | 0.18 | 0.06 | 0.0038 | 0.08 | 0.624 | 0.036 | 0.08 | 0.08 | 0.0144 |
| cosine_recall@3 | 0.0867 | 0.0604 | 0.18 | 0.062 | 0.31 | 0.26 | 0.0073 | 0.17 | 0.772 | 0.0747 | 0.26 | 0.195 | 0.0488 |
| cosine_recall@5 | 0.1117 | 0.1027 | 0.22 | 0.1249 | 0.35 | 0.32 | 0.0127 | 0.19 | 0.866 | 0.0947 | 0.32 | 0.28 | 0.0793 |
| cosine_recall@10 | 0.1783 | 0.1961 | 0.34 | 0.1557 | 0.39 | 0.36 | 0.0193 | 0.4 | 0.8993 | 0.1347 | 0.4 | 0.3 | 0.1465 |
| **cosine_ndcg@10** | **0.1412** | **0.3415** | **0.2122** | **0.104** | **0.3505** | **0.2142** | **0.0987** | **0.2052** | **0.7993** | **0.1348** | **0.2375** | **0.1937** | **0.2486** |
| cosine_mrr@10 | 0.1994 | 0.5504 | 0.1749 | 0.1082 | 0.4476 | 0.1667 | 0.2539 | 0.1507 | 0.7798 | 0.2421 | 0.1857 | 0.1647 | 0.4082 |
| cosine_map@100 | 0.1136 | 0.2113 | 0.1886 | 0.0804 | 0.2931 | 0.1916 | 0.0189 | 0.161 | 0.7635 | 0.1026 | 0.1985 | 0.1654 | 0.1638 |
#### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2065 |
| cosine_accuracy@3 | 0.3392 |
| cosine_accuracy@5 | 0.4104 |
| cosine_accuracy@10 | 0.5121 |
| cosine_precision@1 | 0.2065 |
| cosine_precision@3 | 0.1419 |
| cosine_precision@5 | 0.1176 |
| cosine_precision@10 | 0.0882 |
| cosine_recall@1 | 0.1081 |
| cosine_recall@3 | 0.1913 |
| cosine_recall@5 | 0.2363 |
| cosine_recall@10 | 0.3015 |
| **cosine_ndcg@10** | **0.2524** |
| cosine_mrr@10 | 0.2948 |
| cosine_map@100 | 0.204 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.86 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.48 tokens</li><li>max: 138 tokens</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the difference between broilers and layers?</code> | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code> |
| <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |
| <code>is kamagra same as viagra?</code> | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 61.03 tokens</li><li>max: 127 tokens</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> |
| <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> |
| <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 1024
- `per_device_eval_batch_size`: 1024
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 1024
- `per_device_eval_batch_size`: 1024
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
| 0 | 0 | - | - | 0.1174 | 0.3053 | 0.1405 | 0.0440 | 0.2821 | 0.2297 | 0.0773 | 0.1708 | 0.7830 | 0.1181 | 0.2017 | 0.1447 | 0.1642 | 0.2138 |
| 0.0010 | 1 | 3.6449 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0256 | 25 | 3.6146 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0512 | 50 | 3.6074 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0768 | 75 | 3.5997 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1024 | 100 | 3.5737 | 2.0205 | 0.1178 | 0.3061 | 0.1477 | 0.0461 | 0.2837 | 0.2291 | 0.0804 | 0.1713 | 0.7791 | 0.1205 | 0.2049 | 0.1534 | 0.1731 | 0.2164 |
| 0.1279 | 125 | 3.5644 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1535 | 150 | 3.4792 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1791 | 175 | 3.4743 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2047 | 200 | 3.4169 | 1.9114 | 0.1336 | 0.3084 | 0.1446 | 0.0604 | 0.2965 | 0.2350 | 0.0847 | 0.1650 | 0.7806 | 0.1270 | 0.2141 | 0.1633 | 0.1835 | 0.2228 |
| 0.2303 | 225 | 3.3535 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2559 | 250 | 3.3336 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2815 | 275 | 3.3038 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3071 | 300 | 3.2576 | 1.8114 | 0.1359 | 0.3260 | 0.1733 | 0.0752 | 0.3167 | 0.2323 | 0.0851 | 0.1753 | 0.7843 | 0.1266 | 0.2218 | 0.1752 | 0.2012 | 0.2330 |
| 0.3327 | 325 | 3.2304 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3582 | 350 | 3.2133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3838 | 375 | 3.1369 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4094 | 400 | 3.1412 | 1.7379 | 0.1389 | 0.3298 | 0.1930 | 0.0934 | 0.3261 | 0.2310 | 0.0852 | 0.1760 | 0.7850 | 0.1349 | 0.2235 | 0.1863 | 0.2118 | 0.2396 |
| 0.4350 | 425 | 3.0782 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4606 | 450 | 3.0948 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4862 | 475 | 3.0696 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5118 | 500 | 3.0641 | 1.6850 | 0.1373 | 0.3307 | 0.1945 | 0.0937 | 0.3301 | 0.2365 | 0.0931 | 0.1950 | 0.7933 | 0.1359 | 0.2231 | 0.1885 | 0.2289 | 0.2447 |
| 0.5374 | 525 | 3.0224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5629 | 550 | 2.9927 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5885 | 575 | 2.9796 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6141 | 600 | 2.9624 | 1.6475 | 0.1397 | 0.3321 | 0.2058 | 0.0999 | 0.3422 | 0.2276 | 0.1014 | 0.1901 | 0.7971 | 0.1393 | 0.2258 | 0.1918 | 0.2342 | 0.2482 |
| 0.6397 | 625 | 2.9508 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6653 | 650 | 2.958 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6909 | 675 | 2.9428 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7165 | 700 | 2.9589 | 1.6209 | 0.1425 | 0.3344 | 0.2061 | 0.1050 | 0.3427 | 0.2295 | 0.1001 | 0.1868 | 0.7955 | 0.1342 | 0.2298 | 0.1922 | 0.2343 | 0.2487 |
| 0.7421 | 725 | 2.9152 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7677 | 750 | 2.9056 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7932 | 775 | 2.9111 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8188 | 800 | 2.9107 | 1.6037 | 0.1415 | 0.3401 | 0.2064 | 0.1053 | 0.3523 | 0.2153 | 0.1001 | 0.1934 | 0.7976 | 0.1340 | 0.2302 | 0.1946 | 0.2461 | 0.2505 |
| 0.8444 | 825 | 2.8675 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8700 | 850 | 2.9175 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8956 | 875 | 2.8592 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9212 | 900 | 2.86 | 1.5941 | 0.1411 | 0.3415 | 0.2180 | 0.1048 | 0.3506 | 0.2210 | 0.0987 | 0.2052 | 0.7988 | 0.1349 | 0.2302 | 0.1946 | 0.2464 | 0.2528 |
| 0.9468 | 925 | 2.8603 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9724 | 950 | 2.8909 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9980 | 975 | 2.8819 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0 | 977 | - | - | 0.1412 | 0.3415 | 0.2122 | 0.1040 | 0.3505 | 0.2142 | 0.0987 | 0.2052 | 0.7993 | 0.1348 | 0.2375 | 0.1937 | 0.2486 | 0.2524 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.025 kWh
- **Carbon Emitted**: 0.010 kg of CO2
- **Hours Used**: 0.15 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.3.0.dev0
- Transformers: 4.46.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.0
- Datasets: 2.20.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |