rafaelgeraldini
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,7 @@ library_name: transformers
|
|
3 |
base_model: codellama/CodeLlama-7b-Instruct-hf
|
4 |
license: llama2
|
5 |
datasets:
|
6 |
-
- semantixai/
|
7 |
language:
|
8 |
- pt
|
9 |
tags:
|
@@ -11,41 +11,45 @@ tags:
|
|
11 |
- analytics
|
12 |
- analise-dados
|
13 |
- portugues-BR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
**Lloro 7B**
|
17 |
|
18 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/653176dc69fffcfe1543860a/h0kNd9OTEu1QdGNjHKXoq.png" width="300" alt="Lloro-7b Logo"/>
|
19 |
|
20 |
-
|
21 |
-
Lloro, developed by Semantix Research Labs , is a language Model that was trained to effectively perform Portuguese Data Analysis in Python. It is a fine-tuned version of codellama/CodeLlama-7b-Instruct-hf, that was trained on synthetic datasets . The fine-tuning process was performed using the QLORA metodology on a GPU V100 with 16 GB of RAM.
|
22 |
-
|
23 |
-
|
24 |
|
25 |
**Model description**
|
26 |
|
27 |
-
|
28 |
Model type: A 7B parameter fine-tuned on synthetic datasets.
|
29 |
|
30 |
Language(s) (NLP): Primarily Portuguese, but the model is capable to understand English as well
|
31 |
|
32 |
Finetuned from model: codellama/CodeLlama-7b-Instruct-hf
|
33 |
|
34 |
-
|
35 |
-
|
36 |
**What is Lloro's intended use(s)?**
|
37 |
|
38 |
-
|
39 |
Lloro is built for data analysis in Portuguese contexts .
|
40 |
|
41 |
Input : Text
|
42 |
|
43 |
Output : Text (Code)
|
44 |
|
|
|
|
|
|
|
45 |
|
46 |
**Usage**
|
47 |
|
48 |
Using Transformers
|
|
|
49 |
```python
|
50 |
#Import required libraries
|
51 |
import torch
|
@@ -55,7 +59,7 @@ from transformers import (
|
|
55 |
)
|
56 |
|
57 |
#Load Model
|
58 |
-
model_name = "semantixai/
|
59 |
base_model = AutoModelForCausalLM.from_pretrained(
|
60 |
model_name,
|
61 |
return_dict=True,
|
@@ -80,7 +84,7 @@ outputs = base_model.generate(
|
|
80 |
input_ids,
|
81 |
do_sample=True,
|
82 |
top_p=0.95,
|
83 |
-
max_new_tokens=
|
84 |
temperature=0.1,
|
85 |
)
|
86 |
|
@@ -90,6 +94,7 @@ display(output_text)
|
|
90 |
```
|
91 |
|
92 |
Using an OpenAI compatible inference server (like [vLLM](https://docs.vllm.ai/en/latest/index.html))
|
|
|
93 |
```python
|
94 |
from openai import OpenAI
|
95 |
|
@@ -98,65 +103,59 @@ client = OpenAI(
|
|
98 |
base_url="http://localhost:8000/v1",
|
99 |
)
|
100 |
user_prompt = "Desenvolva um algoritmo em Python para calcular a média e a mediana dos preços de vendas por tipo de material do produto."
|
101 |
-
completion = client.chat.completions.create(temperature=0.1,frequency_penalty=0.1,model="semantixai/
|
102 |
```
|
103 |
-
|
104 |
|
105 |
**Params**
|
106 |
Training Parameters
|
107 |
-
| Params | Training Data
|
108 |
-
|
109 |
-
| 7B | Pairs synthetic instructions/code |
|
110 |
-
|
111 |
|
112 |
**Model Sources**
|
113 |
|
114 |
-
Test Dataset Repository: https://huggingface.co/datasets/semantixai/
|
115 |
-
|
116 |
-
Model Dates Lloro was trained between November 2023 and January 2024.
|
117 |
|
118 |
-
|
119 |
|
120 |
**Performance**
|
121 |
| Modelo | LLM as Judge | Code Bleu Score | Rouge-L | CodeBert- Precision | CodeBert-Recall | CodeBert-F1 | CodeBert-F3 |
|
122 |
|----------------|--------------|------------------|---------|----------------------|-----------------|-------------|-------------|
|
123 |
-
| GPT 3.5 |
|
124 |
-
| Instruct -Base |
|
125 |
-
| Instruct -FT | 97.
|
126 |
-
|
127 |
|
128 |
**Training Infos:**
|
129 |
The following hyperparameters were used during training:
|
130 |
|
131 |
-
| Parameter | Value
|
132 |
-
|
133 |
-
| learning_rate |
|
134 |
-
| weight_decay | 0.0001
|
135 |
-
| train_batch_size |
|
136 |
-
| eval_batch_size |
|
137 |
-
| seed | 42
|
138 |
| optimizer | Adam - paged_adamw_32bit |
|
139 |
-
| lr_scheduler_type | cosine
|
140 |
-
| lr_scheduler_warmup_ratio | 0.
|
141 |
-
| num_epochs |
|
142 |
|
143 |
**QLoRA hyperparameters**
|
144 |
The following parameters related with the Quantized Low-Rank Adaptation and Quantization were used during training:
|
145 |
|
146 |
-
| Parameter
|
147 |
-
|
148 |
-
| lora_r |
|
149 |
-
| lora_alpha |
|
150 |
-
| lora_dropout | 0.1
|
151 |
-
| storage_dtype | "nf4"
|
152 |
-
| compute_dtype | "
|
153 |
-
|
154 |
|
155 |
**Experiments**
|
156 |
-
| Model | Epochs | Overfitting | Final Epochs | Training Hours
|
157 |
-
|
158 |
-
| Code Llama Instruct | 1 | No | 1 |
|
159 |
-
| Code Llama Instruct |
|
160 |
|
161 |
**Framework versions**
|
162 |
|
@@ -166,4 +165,4 @@ The following parameters related with the Quantized Low-Rank Adaptation and Qua
|
|
166 |
| Datasets | 2.14.3 |
|
167 |
| Pytorch | 2.0.1 |
|
168 |
| Tokenizers | 0.14.1 |
|
169 |
-
| Transformers | 4.34.0 |
|
|
|
3 |
base_model: codellama/CodeLlama-7b-Instruct-hf
|
4 |
license: llama2
|
5 |
datasets:
|
6 |
+
- semantixai/LloroV3
|
7 |
language:
|
8 |
- pt
|
9 |
tags:
|
|
|
11 |
- analytics
|
12 |
- analise-dados
|
13 |
- portugues-BR
|
14 |
+
|
15 |
+
co2_eq_emissions:
|
16 |
+
emissions: 1320
|
17 |
+
source: "Lacoste, Alexandre, et al. “Quantifying the Carbon Emissions of Machine Learning.” ArXiv (Cornell University), 21 Oct. 2019, https://doi.org/10.48550/arxiv.1910.09700."
|
18 |
+
training_type: "fine-tuning"
|
19 |
+
geographical_location: "Council Bluffs, Iowa, USA."
|
20 |
+
hardware_used: "1 A100 40GB GPU"
|
21 |
---
|
22 |
|
23 |
**Lloro 7B**
|
24 |
|
25 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/653176dc69fffcfe1543860a/h0kNd9OTEu1QdGNjHKXoq.png" width="300" alt="Lloro-7b Logo"/>
|
26 |
|
27 |
+
Lloro, developed by Semantix Research Labs , is a language Model that was trained to effectively perform Portuguese Data Analysis in Python. It is a fine-tuned version of codellama/CodeLlama-7b-Instruct-hf, that was trained on synthetic datasets. The fine-tuning process was performed using the QLORA metodology on a GPU A100 with 40 GB of RAM.
|
|
|
|
|
|
|
28 |
|
29 |
**Model description**
|
30 |
|
|
|
31 |
Model type: A 7B parameter fine-tuned on synthetic datasets.
|
32 |
|
33 |
Language(s) (NLP): Primarily Portuguese, but the model is capable to understand English as well
|
34 |
|
35 |
Finetuned from model: codellama/CodeLlama-7b-Instruct-hf
|
36 |
|
|
|
|
|
37 |
**What is Lloro's intended use(s)?**
|
38 |
|
|
|
39 |
Lloro is built for data analysis in Portuguese contexts .
|
40 |
|
41 |
Input : Text
|
42 |
|
43 |
Output : Text (Code)
|
44 |
|
45 |
+
**V3 Release**
|
46 |
+
- Context Lenght increased to 2048.
|
47 |
+
- Fine-tuning dataset increased to 74222 examples.
|
48 |
|
49 |
**Usage**
|
50 |
|
51 |
Using Transformers
|
52 |
+
|
53 |
```python
|
54 |
#Import required libraries
|
55 |
import torch
|
|
|
59 |
)
|
60 |
|
61 |
#Load Model
|
62 |
+
model_name = "semantixai/Lloro"
|
63 |
base_model = AutoModelForCausalLM.from_pretrained(
|
64 |
model_name,
|
65 |
return_dict=True,
|
|
|
84 |
input_ids,
|
85 |
do_sample=True,
|
86 |
top_p=0.95,
|
87 |
+
max_new_tokens=2048,
|
88 |
temperature=0.1,
|
89 |
)
|
90 |
|
|
|
94 |
```
|
95 |
|
96 |
Using an OpenAI compatible inference server (like [vLLM](https://docs.vllm.ai/en/latest/index.html))
|
97 |
+
|
98 |
```python
|
99 |
from openai import OpenAI
|
100 |
|
|
|
103 |
base_url="http://localhost:8000/v1",
|
104 |
)
|
105 |
user_prompt = "Desenvolva um algoritmo em Python para calcular a média e a mediana dos preços de vendas por tipo de material do produto."
|
106 |
+
completion = client.chat.completions.create(temperature=0.1,frequency_penalty=0.1,model="semantixai/Lloro",messages=[{"role":"system","content":"Provide answers in Python without explanations, only the code"},{"role":"user","content":user_prompt}])
|
107 |
```
|
|
|
108 |
|
109 |
**Params**
|
110 |
Training Parameters
|
111 |
+
| Params | Training Data | Examples | Tokens | LR |
|
112 |
+
|----------------------------------|-----------------------------------|---------------------------------|----------|--------|
|
113 |
+
| 7B | Pairs synthetic instructions/code | 74222 | 9 351 532| 2e-4 |
|
|
|
114 |
|
115 |
**Model Sources**
|
116 |
|
117 |
+
Test Dataset Repository: <https://huggingface.co/datasets/semantixai/LloroV3>
|
|
|
|
|
118 |
|
119 |
+
Model Dates: Lloro was trained between February 2024 and April 2024.
|
120 |
|
121 |
**Performance**
|
122 |
| Modelo | LLM as Judge | Code Bleu Score | Rouge-L | CodeBert- Precision | CodeBert-Recall | CodeBert-F1 | CodeBert-F3 |
|
123 |
|----------------|--------------|------------------|---------|----------------------|-----------------|-------------|-------------|
|
124 |
+
| GPT 3.5 | 94.29% | 0.3538 | 0.3756 | 0.8099 | 0.8176 | 0.8128 | 0.8164 |
|
125 |
+
| Instruct -Base | 88.77% | 0.3666 | 0.3351 | 0.8244 | 0.8025 | 0.8121 | 0.8052 |
|
126 |
+
| Instruct -FT | 97.95% | 0.5967 | 0.6717 | 0.9090 | 0.9182 | 0.9131 | 0.9171 |
|
|
|
127 |
|
128 |
**Training Infos:**
|
129 |
The following hyperparameters were used during training:
|
130 |
|
131 |
+
| Parameter | Value |
|
132 |
+
|---------------------------|--------------------------|
|
133 |
+
| learning_rate | 2e-4 |
|
134 |
+
| weight_decay | 0.0001 |
|
135 |
+
| train_batch_size | 7 |
|
136 |
+
| eval_batch_size | 7 |
|
137 |
+
| seed | 42 |
|
138 |
| optimizer | Adam - paged_adamw_32bit |
|
139 |
+
| lr_scheduler_type | cosine |
|
140 |
+
| lr_scheduler_warmup_ratio | 0.06 |
|
141 |
+
| num_epochs | 4.0 |
|
142 |
|
143 |
**QLoRA hyperparameters**
|
144 |
The following parameters related with the Quantized Low-Rank Adaptation and Quantization were used during training:
|
145 |
|
146 |
+
| Parameter | Value |
|
147 |
+
|------------------|-----------|
|
148 |
+
| lora_r | 64 |
|
149 |
+
| lora_alpha | 256 |
|
150 |
+
| lora_dropout | 0.1 |
|
151 |
+
| storage_dtype | "nf4" |
|
152 |
+
| compute_dtype | "bfloat16"|
|
|
|
153 |
|
154 |
**Experiments**
|
155 |
+
| Model | Epochs | Overfitting | Final Epochs | Training Hours | CO2 Emission (Kg) |
|
156 |
+
|-----------------------|--------|-------------|--------------|-----------------|-------------------|
|
157 |
+
| Code Llama Instruct | 1 | No | 1 | 3.01 | 0.43 |
|
158 |
+
| Code Llama Instruct | 4 | Yes | 3 | 9.25 | 1.32 |
|
159 |
|
160 |
**Framework versions**
|
161 |
|
|
|
165 |
| Datasets | 2.14.3 |
|
166 |
| Pytorch | 2.0.1 |
|
167 |
| Tokenizers | 0.14.1 |
|
168 |
+
| Transformers | 4.34.0 |
|