File size: 1,271 Bytes
e98f2b9 9ab8a0e e98f2b9 01b31b3 e98f2b9 01b31b3 e98f2b9 01b31b3 e98f2b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
tags: autonlp
language: en
widget:
- text: "take our country back. Stop the steal! #trump2020"
datasets:
- sefaozalpadl/autonlp-data-stop_the_steal_relevancy_analysis
co2_eq_emissions: 0.6503024714880831
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 23995359
- CO2 Emissions (in grams): 0.6503024714880831
## Validation Metrics
- Loss: 0.49598395824432373
- Accuracy: 0.7907801418439716
- Precision: 0.7841726618705036
- Recall: 0.7898550724637681
- AUC: 0.8774154589371981
- F1: 0.7870036101083032
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/sefaozalpadl/stop_the_steal_relevancy_analysis-binary
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("sefaozalpadl/stop_the_steal_relevancy_analysis-binary", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("sefaozalpadl/stop_the_steal_relevancy_analysis-binary", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |