sebasu11 commited on
Commit
4f40fc5
·
1 Parent(s): b48ca28

Upload Unit 1 AGENT - PPO LunarLander-v2

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 190.58 +/- 23.40
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0363dcadd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0363dcae60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0363dcaef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0363dcaf80>", "_build": "<function ActorCriticPolicy._build at 0x7f0363dd2050>", "forward": "<function ActorCriticPolicy.forward at 0x7f0363dd20e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0363dd2170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0363dd2200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0363dd2290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0363dd2320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0363dd23b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0363da14b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 557056, "_total_timesteps": 550000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651942108.2484584, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0l3r22QQ09Zi0QPJUSE77kTHy8fmAXvAAAAAAAAAAAc9u5veHa07go14s7TrOHtqC+yzpQE6a6AACAPwAAgD+a/s88SN2Fuv/Cjzvg81g2w0cDO0NnTzUAAIA/AACAP5ouIb1SsJa5FhyTu0ZGVzPEQrE6JZz4sgAAgD8AAIA/sGhmvgz4zD4nCys+e3m0vStEUDvrGz+9AAAAAAAAAACTtUU+zFDBPuqMOb7eDwa+aPe5PGQZkzwAAAAAAAAAANqY870P/Ck/TMWyPaxVIb4SaHm8ksmFvAAAAAAAAAAAAIMkPRSojLruF1W6hLqMtZLFg7oKR3U5AACAPwAAgD/N7Js7DDOTP467DD2fu46++pfPvcxtkr0AAAAAAAAAAHN2sr0d+Ac/D50WvPLVEr6+om+802/RvAAAAAAAAAAA2l/UPVxXNrq7vfY79LE8OPnGpLsJpQa3AACAPwAAgD8azdM94MClPzDzJz+1v6u+BkyAu0HOtz0AAAAAAAAAAEBCIT5KpgC9jJ6KPfAT8jwPZUI81Qb8vQAAgD8AAIA/wwKDPrUNAj8Evxy+1hsmvuSjFT2Q07q9AAAAAAAAAABzNAa+nvBXP3VP9D39S0S+yVSbvb7iaz4AAAAAAAAAADOz8DwUsJa6tgK9O0F9KTjdBr265ojGNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.012829090909090901, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITrnCu1y8LkCUhpRSlIwBbJRNKQGMAXSUR0CXJFUIsyzpdX2UKGgGaAloD0MIgbBTrBoLW0CUhpRSlGgVTegDaBZHQJcmPKNhmXh1fZQoaAZoCWgPQwhYjpCBPPFeQJSGlFKUaBVN6ANoFkdAlywCqZML4XV9lChoBmgJaA9DCCyBlNi1eF5AlIaUUpRoFU3oA2gWR0CXMxe0ojOcdX2UKGgGaAloD0MIjX3JxoPUYkCUhpRSlGgVTegDaBZHQJczLBGhEjR1fZQoaAZoCWgPQwg1Q6ooXm1iQJSGlFKUaBVN6ANoFkdAlzWwVGkN4XV9lChoBmgJaA9DCO58PzVeihlAlIaUUpRoFU1HAWgWR0CXPH+HrQgLdX2UKGgGaAloD0MIVRSvsrbZWECUhpRSlGgVTegDaBZHQJc8vI3irDJ1fZQoaAZoCWgPQwg+sU6V79ldQJSGlFKUaBVN6ANoFkdAlz4gccU/OnV9lChoBmgJaA9DCKXXZmOlC2FAlIaUUpRoFU3oA2gWR0CXPkfgrH2idX2UKGgGaAloD0MIGHjuPVyiE0CUhpRSlGgVTWsBaBZHQJc+jv5P/Jh1fZQoaAZoCWgPQwj8HYoCfcJSQJSGlFKUaBVN6ANoFkdAlz8z+NtIkXV9lChoBmgJaA9DCAQEc/T4f2NAlIaUUpRoFU3oA2gWR0CXZUJtzjm0dX2UKGgGaAloD0MIgQUwZeBCYECUhpRSlGgVTegDaBZHQJdvOANG3F11fZQoaAZoCWgPQwgf9dcrrM5hQJSGlFKUaBVN6ANoFkdAl3s91EE1VHV9lChoBmgJaA9DCA4yychZWFhAlIaUUpRoFU3oA2gWR0CXiNFRHf/FdX2UKGgGaAloD0MIC3xFt14vW0CUhpRSlGgVTegDaBZHQJeKMSg5BC51fZQoaAZoCWgPQwgTKGIRw5xYQJSGlFKUaBVN6ANoFkdAl47LblA/s3V9lChoBmgJaA9DCERPyqSGFV9AlIaUUpRoFU3oA2gWR0CXlPtDlYEGdX2UKGgGaAloD0MIDoP5K+QbY0CUhpRSlGgVTegDaBZHQJec0umJm/Z1fZQoaAZoCWgPQwiymxn9aDhiQJSGlFKUaBVN6ANoFkdAl5znl0YCQ3V9lChoBmgJaA9DCIS3ByEgDmJAlIaUUpRoFU3oA2gWR0CXn923azu4dX2UKGgGaAloD0MIVPzfERUYXUCUhpRSlGgVTegDaBZHQJenTPIGQjl1fZQoaAZoCWgPQwgkJT0MraFfQJSGlFKUaBVN6ANoFkdAl6eJ6t1ZDHV9lChoBmgJaA9DCIW2nEvxymJAlIaUUpRoFU3oA2gWR0CXqPIBBAv+dX2UKGgGaAloD0MIu0bLgR7fXECUhpRSlGgVTegDaBZHQJepF7/n4fx1fZQoaAZoCWgPQwg6JLVQsrFjQJSGlFKUaBVN6ANoFkdAl6ldBWxQi3V9lChoBmgJaA9DCMMq3sg8B2JAlIaUUpRoFU3oA2gWR0CXqgAqNIbwdX2UKGgGaAloD0MIuECC4scAPUCUhpRSlGgVS9toFkdAl6+3sHB1tHV9lChoBmgJaA9DCCy2SUVjcGRAlIaUUpRoFU3oA2gWR0CX0ITsY2sJdX2UKGgGaAloD0MIVHO5wVCHyz+UhpRSlGgVS/ZoFkdAl9NUDZDiO3V9lChoBmgJaA9DCJiIt86/TRVAlIaUUpRoFU0hAWgWR0CX2Ktz0Yj0dX2UKGgGaAloD0MIcD51rNIfYUCUhpRSlGgVTegDaBZHQJfaVFmWdEt1fZQoaAZoCWgPQwiZf/RNGiliQJSGlFKUaBVN6ANoFkdAl+XWfK6nSHV9lChoBmgJaA9DCHaqfM9IZFRAlIaUUpRoFU3oA2gWR0CX884vexfOdX2UKGgGaAloD0MIbM7BM6FnYUCUhpRSlGgVTegDaBZHQJf1RsVLzwt1fZQoaAZoCWgPQwg0nZ0MDmtgQJSGlFKUaBVN6ANoFkdAl/pqt1ZDA3V9lChoBmgJaA9DCMSvWMPFzGNAlIaUUpRoFU3oA2gWR0CYATwAU+LWdX2UKGgGaAloD0MIkWKARBMSXkCUhpRSlGgVTegDaBZHQJgJV9ZzPrx1fZQoaAZoCWgPQwhJvady2tJdQJSGlFKUaBVN6ANoFkdAmAluEM9bHXV9lChoBmgJaA9DCE3aVN0j+y5AlIaUUpRoFU0fAWgWR0CYDccPOIIodX2UKGgGaAloD0MIO8WqQZhPXUCUhpRSlGgVTegDaBZHQJgTSJyhi9Z1fZQoaAZoCWgPQwhqhel7DQ9iQJSGlFKUaBVN6ANoFkdAmBT7jDKoynV9lChoBmgJaA9DCHE486u5gGNAlIaUUpRoFU3oA2gWR0CYFSHMlkYodX2UKGgGaAloD0MIQiPYuH5bY0CUhpRSlGgVTegDaBZHQJgWNPdl/Yt1fZQoaAZoCWgPQwgoK4arA4FaQJSGlFKUaBVN6ANoFkdAmBxz+aScLHV9lChoBmgJaA9DCP/NixNfeV9AlIaUUpRoFU3oA2gWR0CYPPx20Re1dX2UKGgGaAloD0MIL4UHza4zJUCUhpRSlGgVTR4BaBZHQJg9Wkdmxt51fZQoaAZoCWgPQwhfYizTL6NUQJSGlFKUaBVN6ANoFkdAmD+WoR7JGXV9lChoBmgJaA9DCBctQNtqmmNAlIaUUpRoFU3oA2gWR0CYRDTX8O0+dX2UKGgGaAloD0MIlPsdigLKYECUhpRSlGgVTegDaBZHQJhFhpSJj2B1fZQoaAZoCWgPQwgC9WbUfLdbQJSGlFKUaBVN6ANoFkdAmE9pxR2r4nV9lChoBmgJaA9DCBcplIWvLzzAlIaUUpRoFU0oAWgWR0CYUnB+4LCvdX2UKGgGaAloD0MImIV2TrMFYUCUhpRSlGgVTegDaBZHQJhb5QFcIJJ1fZQoaAZoCWgPQwgHms+5WyxkQJSGlFKUaBVN6ANoFkdAmGH6I7/4qXV9lChoBmgJaA9DCPxR1Jl782BAlIaUUpRoFU3oA2gWR0CYaP6KLsKLdX2UKGgGaAloD0MIJzPeVno8X0CUhpRSlGgVTegDaBZHQJhx+Myad+Z1fZQoaAZoCWgPQwgGD9O+uW1UQJSGlFKUaBVN6ANoFkdAmHIOYhMaj3V9lChoBmgJaA9DCMkgdxGmpENAlIaUUpRoFUv8aBZHQJhypxtHhCN1fZQoaAZoCWgPQwgZjBGJQstgQJSGlFKUaBVN6ANoFkdAmH0rXYlIE3V9lChoBmgJaA9DCPPmcK12l2FAlIaUUpRoFU3oA2gWR0CYfxnbqQiidX2UKGgGaAloD0MI7RFqhlRtWkCUhpRSlGgVTegDaBZHQJh/SGATZg51fZQoaAZoCWgPQwgvou2YuglSQJSGlFKUaBVN6ANoFkdAmIBj06HTJHV9lChoBmgJaA9DCNTuVwG+QF5AlIaUUpRoFU3oA2gWR0CYhs5HVf/ndX2UKGgGaAloD0MI0SSxpNx9FkCUhpRSlGgVTSABaBZHQJiJnCpFTeh1fZQoaAZoCWgPQwhjCACOPcxZQJSGlFKUaBVN6ANoFkdAmKd8bFS88XV9lChoBmgJaA9DCDIFa5xNcFlAlIaUUpRoFU3oA2gWR0CYqj3KB/ZvdX2UKGgGaAloD0MIAkUsYlitYkCUhpRSlGgVTegDaBZHQJivO7xusLh1fZQoaAZoCWgPQwitaHOc20hiQJSGlFKUaBVN6ANoFkdAmLCwyhzvJHV9lChoBmgJaA9DCM5xbhPuwmNAlIaUUpRoFU3oA2gWR0CYu4l0HQhPdX2UKGgGaAloD0MIMe4G0VpuWkCUhpRSlGgVTegDaBZHQJi+2yWzF/B1fZQoaAZoCWgPQwhJg9vawnc6QJSGlFKUaBVNGwFoFkdAmMZHoPkJbHV9lChoBmgJaA9DCPJ5xVOPJ2JAlIaUUpRoFU3oA2gWR0CYzw1Ng0CSdX2UKGgGaAloD0MIDqMgeHzTWECUhpRSlGgVTegDaBZHQJjVyy5Zr591fZQoaAZoCWgPQwhxdQDE3W5iQJSGlFKUaBVN6ANoFkdAmN3cxfv4NHV9lChoBmgJaA9DCJnzjH1J82FAlIaUUpRoFU3oA2gWR0CY3fHggow3dX2UKGgGaAloD0MILskBu5oxW0CUhpRSlGgVTegDaBZHQJjo4nG82751fZQoaAZoCWgPQwiSrS6nhFFkQJSGlFKUaBVN6ANoFkdAmOrVnyup0nV9lChoBmgJaA9DCJXVdD3RSVpAlIaUUpRoFU3oA2gWR0CY6wCyyD7JdX2UKGgGaAloD0MI98d71coDXECUhpRSlGgVTegDaBZHQJjsLAN5MUR1fZQoaAZoCWgPQwhBZJEm3oJgQJSGlFKUaBVN6ANoFkdAmPNk163RX3V9lChoBmgJaA9DCP6arFEPQGNAlIaUUpRoFU3oA2gWR0CY9nzH0btJdX2UKGgGaAloD0MI5Gcj100xYkCUhpRSlGgVTegDaBZHQJkUlY0VJtl1fZQoaAZoCWgPQwgNp8zNN+NhQJSGlFKUaBVN6ANoFkdAmReemzjWCnV9lChoBmgJaA9DCA8KStFKZmBAlIaUUpRoFU3oA2gWR0CZHoeVs1sMdX2UKGgGaAloD0MIM93rpL5gXECUhpRSlGgVTegDaBZHQJkqcSh8IAx1fZQoaAZoCWgPQwhPWrisQoZjQJSGlFKUaBVN6ANoFkdAmS3an752yXV9lChoBmgJaA9DCAWHF0Skul1AlIaUUpRoFU3oA2gWR0CZNZc/MW43dX2UKGgGaAloD0MI8KZbdgiqYUCUhpRSlGgVTegDaBZHQJk+WXiR4hV1fZQoaAZoCWgPQwiz0w/qIpZhQJSGlFKUaBVN6ANoFkdAmUWyeiBXjnV9lChoBmgJaA9DCGB15Ehn/2FAlIaUUpRoFU3oA2gWR0CZTlUrkKeDdX2UKGgGaAloD0MIYTJVMKpIYECUhpRSlGgVTegDaBZHQJlOaqgh8pl1fZQoaAZoCWgPQwjxngPLEV5lQJSGlFKUaBVN6ANoFkdAmVoaOtGNJnV9lChoBmgJaA9DCE8Hsp5azRLAlIaUUpRoFUvnaBZHQJlazbtZ3cJ1fZQoaAZoCWgPQwg0K9uHPNVhQJSGlFKUaBVN6ANoFkdAmVweTA31jHV9lChoBmgJaA9DCMmvH2KDaV9AlIaUUpRoFU3oA2gWR0CZXEZpBX0YdX2UKGgGaAloD0MIzAwbZf1MX0CUhpRSlGgVTegDaBZHQJldX5eqrBF1fZQoaAZoCWgPQwhiSbn7HBJeQJSGlFKUaBVN6ANoFkdAmWQlwDNhVnV9lChoBmgJaA9DCIvdPqvMZlxAlIaUUpRoFU3oA2gWR0CZZymxdIGydX2UKGgGaAloD0MI6PUn8Tn7YkCUhpRSlGgVTegDaBZHQJlqfhcZ9/l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 136, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b93ab42520eb210be598f483511d0d1bcb6aba598bef911fa3943f372efb531
3
+ size 251221
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 190.57634553739635, "std_reward": 23.39599543441546, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T17:47:56.154169"}
suo-lander-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a69676849177921a3116131839473218fb306fe354ae6df2830a3bf910e67e56
3
+ size 144044
suo-lander-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
suo-lander-v1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0363dcadd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0363dcae60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0363dcaef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0363dcaf80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0363dd2050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0363dd20e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0363dd2170>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0363dd2200>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0363dd2290>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0363dd2320>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0363dd23b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0363da14b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 557056,
46
+ "_total_timesteps": 550000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651942108.2484584,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0l3r22QQ09Zi0QPJUSE77kTHy8fmAXvAAAAAAAAAAAc9u5veHa07go14s7TrOHtqC+yzpQE6a6AACAPwAAgD+a/s88SN2Fuv/Cjzvg81g2w0cDO0NnTzUAAIA/AACAP5ouIb1SsJa5FhyTu0ZGVzPEQrE6JZz4sgAAgD8AAIA/sGhmvgz4zD4nCys+e3m0vStEUDvrGz+9AAAAAAAAAACTtUU+zFDBPuqMOb7eDwa+aPe5PGQZkzwAAAAAAAAAANqY870P/Ck/TMWyPaxVIb4SaHm8ksmFvAAAAAAAAAAAAIMkPRSojLruF1W6hLqMtZLFg7oKR3U5AACAPwAAgD/N7Js7DDOTP467DD2fu46++pfPvcxtkr0AAAAAAAAAAHN2sr0d+Ac/D50WvPLVEr6+om+802/RvAAAAAAAAAAA2l/UPVxXNrq7vfY79LE8OPnGpLsJpQa3AACAPwAAgD8azdM94MClPzDzJz+1v6u+BkyAu0HOtz0AAAAAAAAAAEBCIT5KpgC9jJ6KPfAT8jwPZUI81Qb8vQAAgD8AAIA/wwKDPrUNAj8Evxy+1hsmvuSjFT2Q07q9AAAAAAAAAABzNAa+nvBXP3VP9D39S0S+yVSbvb7iaz4AAAAAAAAAADOz8DwUsJa6tgK9O0F9KTjdBr265ojGNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.012829090909090901,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITrnCu1y8LkCUhpRSlIwBbJRNKQGMAXSUR0CXJFUIsyzpdX2UKGgGaAloD0MIgbBTrBoLW0CUhpRSlGgVTegDaBZHQJcmPKNhmXh1fZQoaAZoCWgPQwhYjpCBPPFeQJSGlFKUaBVN6ANoFkdAlywCqZML4XV9lChoBmgJaA9DCCyBlNi1eF5AlIaUUpRoFU3oA2gWR0CXMxe0ojOcdX2UKGgGaAloD0MIjX3JxoPUYkCUhpRSlGgVTegDaBZHQJczLBGhEjR1fZQoaAZoCWgPQwg1Q6ooXm1iQJSGlFKUaBVN6ANoFkdAlzWwVGkN4XV9lChoBmgJaA9DCO58PzVeihlAlIaUUpRoFU1HAWgWR0CXPH+HrQgLdX2UKGgGaAloD0MIVRSvsrbZWECUhpRSlGgVTegDaBZHQJc8vI3irDJ1fZQoaAZoCWgPQwg+sU6V79ldQJSGlFKUaBVN6ANoFkdAlz4gccU/OnV9lChoBmgJaA9DCKXXZmOlC2FAlIaUUpRoFU3oA2gWR0CXPkfgrH2idX2UKGgGaAloD0MIGHjuPVyiE0CUhpRSlGgVTWsBaBZHQJc+jv5P/Jh1fZQoaAZoCWgPQwj8HYoCfcJSQJSGlFKUaBVN6ANoFkdAlz8z+NtIkXV9lChoBmgJaA9DCAQEc/T4f2NAlIaUUpRoFU3oA2gWR0CXZUJtzjm0dX2UKGgGaAloD0MIgQUwZeBCYECUhpRSlGgVTegDaBZHQJdvOANG3F11fZQoaAZoCWgPQwgf9dcrrM5hQJSGlFKUaBVN6ANoFkdAl3s91EE1VHV9lChoBmgJaA9DCA4yychZWFhAlIaUUpRoFU3oA2gWR0CXiNFRHf/FdX2UKGgGaAloD0MIC3xFt14vW0CUhpRSlGgVTegDaBZHQJeKMSg5BC51fZQoaAZoCWgPQwgTKGIRw5xYQJSGlFKUaBVN6ANoFkdAl47LblA/s3V9lChoBmgJaA9DCERPyqSGFV9AlIaUUpRoFU3oA2gWR0CXlPtDlYEGdX2UKGgGaAloD0MIDoP5K+QbY0CUhpRSlGgVTegDaBZHQJec0umJm/Z1fZQoaAZoCWgPQwiymxn9aDhiQJSGlFKUaBVN6ANoFkdAl5znl0YCQ3V9lChoBmgJaA9DCIS3ByEgDmJAlIaUUpRoFU3oA2gWR0CXn923azu4dX2UKGgGaAloD0MIVPzfERUYXUCUhpRSlGgVTegDaBZHQJenTPIGQjl1fZQoaAZoCWgPQwgkJT0MraFfQJSGlFKUaBVN6ANoFkdAl6eJ6t1ZDHV9lChoBmgJaA9DCIW2nEvxymJAlIaUUpRoFU3oA2gWR0CXqPIBBAv+dX2UKGgGaAloD0MIu0bLgR7fXECUhpRSlGgVTegDaBZHQJepF7/n4fx1fZQoaAZoCWgPQwg6JLVQsrFjQJSGlFKUaBVN6ANoFkdAl6ldBWxQi3V9lChoBmgJaA9DCMMq3sg8B2JAlIaUUpRoFU3oA2gWR0CXqgAqNIbwdX2UKGgGaAloD0MIuECC4scAPUCUhpRSlGgVS9toFkdAl6+3sHB1tHV9lChoBmgJaA9DCCy2SUVjcGRAlIaUUpRoFU3oA2gWR0CX0ITsY2sJdX2UKGgGaAloD0MIVHO5wVCHyz+UhpRSlGgVS/ZoFkdAl9NUDZDiO3V9lChoBmgJaA9DCJiIt86/TRVAlIaUUpRoFU0hAWgWR0CX2Ktz0Yj0dX2UKGgGaAloD0MIcD51rNIfYUCUhpRSlGgVTegDaBZHQJfaVFmWdEt1fZQoaAZoCWgPQwiZf/RNGiliQJSGlFKUaBVN6ANoFkdAl+XWfK6nSHV9lChoBmgJaA9DCHaqfM9IZFRAlIaUUpRoFU3oA2gWR0CX884vexfOdX2UKGgGaAloD0MIbM7BM6FnYUCUhpRSlGgVTegDaBZHQJf1RsVLzwt1fZQoaAZoCWgPQwg0nZ0MDmtgQJSGlFKUaBVN6ANoFkdAl/pqt1ZDA3V9lChoBmgJaA9DCMSvWMPFzGNAlIaUUpRoFU3oA2gWR0CYATwAU+LWdX2UKGgGaAloD0MIkWKARBMSXkCUhpRSlGgVTegDaBZHQJgJV9ZzPrx1fZQoaAZoCWgPQwhJvady2tJdQJSGlFKUaBVN6ANoFkdAmAluEM9bHXV9lChoBmgJaA9DCE3aVN0j+y5AlIaUUpRoFU0fAWgWR0CYDccPOIIodX2UKGgGaAloD0MIO8WqQZhPXUCUhpRSlGgVTegDaBZHQJgTSJyhi9Z1fZQoaAZoCWgPQwhqhel7DQ9iQJSGlFKUaBVN6ANoFkdAmBT7jDKoynV9lChoBmgJaA9DCHE486u5gGNAlIaUUpRoFU3oA2gWR0CYFSHMlkYodX2UKGgGaAloD0MIQiPYuH5bY0CUhpRSlGgVTegDaBZHQJgWNPdl/Yt1fZQoaAZoCWgPQwgoK4arA4FaQJSGlFKUaBVN6ANoFkdAmBxz+aScLHV9lChoBmgJaA9DCP/NixNfeV9AlIaUUpRoFU3oA2gWR0CYPPx20Re1dX2UKGgGaAloD0MIL4UHza4zJUCUhpRSlGgVTR4BaBZHQJg9Wkdmxt51fZQoaAZoCWgPQwhfYizTL6NUQJSGlFKUaBVN6ANoFkdAmD+WoR7JGXV9lChoBmgJaA9DCBctQNtqmmNAlIaUUpRoFU3oA2gWR0CYRDTX8O0+dX2UKGgGaAloD0MIlPsdigLKYECUhpRSlGgVTegDaBZHQJhFhpSJj2B1fZQoaAZoCWgPQwgC9WbUfLdbQJSGlFKUaBVN6ANoFkdAmE9pxR2r4nV9lChoBmgJaA9DCBcplIWvLzzAlIaUUpRoFU0oAWgWR0CYUnB+4LCvdX2UKGgGaAloD0MImIV2TrMFYUCUhpRSlGgVTegDaBZHQJhb5QFcIJJ1fZQoaAZoCWgPQwgHms+5WyxkQJSGlFKUaBVN6ANoFkdAmGH6I7/4qXV9lChoBmgJaA9DCPxR1Jl782BAlIaUUpRoFU3oA2gWR0CYaP6KLsKLdX2UKGgGaAloD0MIJzPeVno8X0CUhpRSlGgVTegDaBZHQJhx+Myad+Z1fZQoaAZoCWgPQwgGD9O+uW1UQJSGlFKUaBVN6ANoFkdAmHIOYhMaj3V9lChoBmgJaA9DCMkgdxGmpENAlIaUUpRoFUv8aBZHQJhypxtHhCN1fZQoaAZoCWgPQwgZjBGJQstgQJSGlFKUaBVN6ANoFkdAmH0rXYlIE3V9lChoBmgJaA9DCPPmcK12l2FAlIaUUpRoFU3oA2gWR0CYfxnbqQiidX2UKGgGaAloD0MI7RFqhlRtWkCUhpRSlGgVTegDaBZHQJh/SGATZg51fZQoaAZoCWgPQwgvou2YuglSQJSGlFKUaBVN6ANoFkdAmIBj06HTJHV9lChoBmgJaA9DCNTuVwG+QF5AlIaUUpRoFU3oA2gWR0CYhs5HVf/ndX2UKGgGaAloD0MI0SSxpNx9FkCUhpRSlGgVTSABaBZHQJiJnCpFTeh1fZQoaAZoCWgPQwhjCACOPcxZQJSGlFKUaBVN6ANoFkdAmKd8bFS88XV9lChoBmgJaA9DCDIFa5xNcFlAlIaUUpRoFU3oA2gWR0CYqj3KB/ZvdX2UKGgGaAloD0MIAkUsYlitYkCUhpRSlGgVTegDaBZHQJivO7xusLh1fZQoaAZoCWgPQwitaHOc20hiQJSGlFKUaBVN6ANoFkdAmLCwyhzvJHV9lChoBmgJaA9DCM5xbhPuwmNAlIaUUpRoFU3oA2gWR0CYu4l0HQhPdX2UKGgGaAloD0MIMe4G0VpuWkCUhpRSlGgVTegDaBZHQJi+2yWzF/B1fZQoaAZoCWgPQwhJg9vawnc6QJSGlFKUaBVNGwFoFkdAmMZHoPkJbHV9lChoBmgJaA9DCPJ5xVOPJ2JAlIaUUpRoFU3oA2gWR0CYzw1Ng0CSdX2UKGgGaAloD0MIDqMgeHzTWECUhpRSlGgVTegDaBZHQJjVyy5Zr591fZQoaAZoCWgPQwhxdQDE3W5iQJSGlFKUaBVN6ANoFkdAmN3cxfv4NHV9lChoBmgJaA9DCJnzjH1J82FAlIaUUpRoFU3oA2gWR0CY3fHggow3dX2UKGgGaAloD0MILskBu5oxW0CUhpRSlGgVTegDaBZHQJjo4nG82751fZQoaAZoCWgPQwiSrS6nhFFkQJSGlFKUaBVN6ANoFkdAmOrVnyup0nV9lChoBmgJaA9DCJXVdD3RSVpAlIaUUpRoFU3oA2gWR0CY6wCyyD7JdX2UKGgGaAloD0MI98d71coDXECUhpRSlGgVTegDaBZHQJjsLAN5MUR1fZQoaAZoCWgPQwhBZJEm3oJgQJSGlFKUaBVN6ANoFkdAmPNk163RX3V9lChoBmgJaA9DCP6arFEPQGNAlIaUUpRoFU3oA2gWR0CY9nzH0btJdX2UKGgGaAloD0MI5Gcj100xYkCUhpRSlGgVTegDaBZHQJkUlY0VJtl1fZQoaAZoCWgPQwgNp8zNN+NhQJSGlFKUaBVN6ANoFkdAmReemzjWCnV9lChoBmgJaA9DCA8KStFKZmBAlIaUUpRoFU3oA2gWR0CZHoeVs1sMdX2UKGgGaAloD0MIM93rpL5gXECUhpRSlGgVTegDaBZHQJkqcSh8IAx1fZQoaAZoCWgPQwhPWrisQoZjQJSGlFKUaBVN6ANoFkdAmS3an752yXV9lChoBmgJaA9DCAWHF0Skul1AlIaUUpRoFU3oA2gWR0CZNZc/MW43dX2UKGgGaAloD0MI8KZbdgiqYUCUhpRSlGgVTegDaBZHQJk+WXiR4hV1fZQoaAZoCWgPQwiz0w/qIpZhQJSGlFKUaBVN6ANoFkdAmUWyeiBXjnV9lChoBmgJaA9DCGB15Ehn/2FAlIaUUpRoFU3oA2gWR0CZTlUrkKeDdX2UKGgGaAloD0MIYTJVMKpIYECUhpRSlGgVTegDaBZHQJlOaqgh8pl1fZQoaAZoCWgPQwjxngPLEV5lQJSGlFKUaBVN6ANoFkdAmVoaOtGNJnV9lChoBmgJaA9DCE8Hsp5azRLAlIaUUpRoFUvnaBZHQJlazbtZ3cJ1fZQoaAZoCWgPQwg0K9uHPNVhQJSGlFKUaBVN6ANoFkdAmVweTA31jHV9lChoBmgJaA9DCMmvH2KDaV9AlIaUUpRoFU3oA2gWR0CZXEZpBX0YdX2UKGgGaAloD0MIzAwbZf1MX0CUhpRSlGgVTegDaBZHQJldX5eqrBF1fZQoaAZoCWgPQwhiSbn7HBJeQJSGlFKUaBVN6ANoFkdAmWQlwDNhVnV9lChoBmgJaA9DCIvdPqvMZlxAlIaUUpRoFU3oA2gWR0CZZymxdIGydX2UKGgGaAloD0MI6PUn8Tn7YkCUhpRSlGgVTegDaBZHQJlqfhcZ9/l1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 136,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
suo-lander-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59e1a4bce8a729044d63bfbb7090ce507ab252ec317055f13d64970e453f2f2f
3
+ size 84829
suo-lander-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5694d1731bb151436f29ece1f8fb10943ea02e0fa7d7575b2365c2cfeb121c35
3
+ size 43201
suo-lander-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
suo-lander-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0