seanmor5 commited on
Commit
fd71d03
·
verified ·
1 Parent(s): 5fd720a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -173
README.md CHANGED
@@ -1,204 +1,94 @@
1
  ---
2
  library_name: peft
3
  base_model: mistralai/Mistral-7B-Instruct-v0.1
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
100
 
101
- [More Information Needed]
 
 
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
 
108
 
109
- #### Testing Data
 
 
 
 
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
 
114
 
115
- #### Factors
 
 
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
202
- ### Framework versions
203
 
204
- - PEFT 0.8.2
 
 
1
  ---
2
  library_name: peft
3
  base_model: mistralai/Mistral-7B-Instruct-v0.1
4
+ license: apache-2.0
5
+ datasets:
6
+ - liuhaotian/LLaVA-Instruct-150K
7
  ---
8
 
9
  # Model Card for Model ID
10
 
11
+ ![Text Meme](meme.jpg)
12
 
13
+ Is text really all you need? Probably not, but the least we can do is try. This repo contains a QLoRA fine-tune of Mistral-7B on the original Llava-150K-Instruct dataset; however, each image is encoded as a base64 representation. With enough data, can a LLM learn to "see" just from text? Early results say absolutely not, but I am committed to burning my GPU credits regardless of how bad the result.
14
 
15
+ I do believe in the future we will see a "simplification" of architectures designed to work for multiple modalities. LLaVA, for example, combines a vision encoder with a pre-trained LLM. Perhaps models of the future will have a joint-representation for both images and text, and not have to rely on splicing 2 models together. For example, perhaps [Token-Free Models](https://arxiv.org/html/2401.13660v1) could be trained on multi-modal byte representations of inputs. Of course, this would be extremely computationally expensive compared to modern vision models, but maybe 10-20 years down the line it's not that big of a deal?
16
 
17
+ To use this model, you can load the base Mistral model and the adapter:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ ```python
20
+ import torch
21
+ from peft import PeftModel
22
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
23
 
24
+ BASE_MODEL = "mistralai/Mistral-7B-Instruct-v0.1"
25
+ ADAPTER_MODEL = "seanmor5/mistral-7b-instruct-vision-64-qlora"
26
+ MAX_SEQ_LEN = 2048
27
 
28
+ device = "cuda"
29
 
30
+ bnb_config = BitsAndBytesConfig(
31
+ load_in_4bit=True,
32
+ bnb_4bit_use_double_quant=True,
33
+ bnb_4bit_quant_type="nf4",
34
+ bnb_4bit_compute_dtype=torch.bfloat16,
35
+ )
36
 
37
+ model = AutoModelForCausalLM.from_pretrained(BASE_MODEL)
38
+ model = PeftModel.from_pretrained(model, ADAPTER_MODEL)
39
 
40
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, model_max_length=MAX_SEQ_LEN)
41
+ tokenizer.pad_token = tokenizer.eos_token
42
+ ```
43
 
44
+ One challenge with this approach is sequence length. High resolution images are large, and when encoded in base64 create prohibitively large sequences. To naively overcome this we aggressively resize and downsample the image:
45
 
46
+ ```python
47
+ import base64
48
+ from io import BytesIO
49
+ from PIL import Image
50
 
51
+ TARGET_SIZE = (224, 168)
52
+ TARGET_QUALITY = 5
53
 
54
+ def downsample(path):
55
+ img = Image.open(path)
56
+ img = img.resize(TARGET_SIZE, Image.ANTIALIAS)
57
+ buf = BytesIO()
58
+ img.save(buf, optimize=True, quality=5, format="JPEG")
59
+ return f"<image>{base64.b64encode(buf.getvalue()).decode()}</image>"
60
+ ```
61
 
62
+ Then we can use the default Mistral chat output, ensuring our images are encoded properly within the text:
63
 
64
+ ```python
65
+ def replace_image(seq, img):
66
+ return seq.replace("<image>", downsample(img))
67
 
68
+ prompt = (
69
+ "<image>\nWhat is the dog doing in this photo?"
70
+ )
71
+ prompt = replace_image(prompt, "dog.jpg")
72
+ print(prompt)
73
 
74
+ messages = [{"role": "user", "content": prompt}]
75
 
76
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
77
 
78
+ model_inputs = encodeds.to(device)
79
+ model.to(device)
80
 
81
+ generated_ids = model.generate(
82
+ input_ids=model_inputs, max_new_tokens=1000, do_sample=True
83
+ )
84
+ decoded = tokenizer.batch_decode(generated_ids)
85
+ print(decoded[0])
86
+ ```
87
 
88
+ Even with this aggressive downsampling, some images result in sequences that are too large. Tough luck. I also did not do this experiment with any other format but JPEG images, and I did not consider the effect that the image format may have had on the model's performance.
89
 
 
90
 
91
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
+ - **Developed by:** Sean Moriarity
94
+ - **License:** Apache 2.0