sdadas commited on
Commit
0208d6a
1 Parent(s): 51150ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1152 -0
README.md CHANGED
@@ -5,6 +5,1158 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  language: pl
9
  license: apache-2.0
10
  widget:
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ - mteb
9
+ model-index:
10
+ - name: mmlw-roberta-base
11
+ results:
12
+ - task:
13
+ type: Clustering
14
+ dataset:
15
+ type: PL-MTEB/8tags-clustering
16
+ name: MTEB 8TagsClustering
17
+ config: default
18
+ split: test
19
+ revision: None
20
+ metrics:
21
+ - type: v_measure
22
+ value: 33.08463724780795
23
+ - task:
24
+ type: Classification
25
+ dataset:
26
+ type: PL-MTEB/allegro-reviews
27
+ name: MTEB AllegroReviews
28
+ config: default
29
+ split: test
30
+ revision: None
31
+ metrics:
32
+ - type: accuracy
33
+ value: 40.25844930417495
34
+ - type: f1
35
+ value: 35.59685265418916
36
+ - task:
37
+ type: Retrieval
38
+ dataset:
39
+ type: arguana-pl
40
+ name: MTEB ArguAna-PL
41
+ config: default
42
+ split: test
43
+ revision: None
44
+ metrics:
45
+ - type: map_at_1
46
+ value: 33.073
47
+ - type: map_at_10
48
+ value: 50.223
49
+ - type: map_at_100
50
+ value: 50.942
51
+ - type: map_at_1000
52
+ value: 50.94499999999999
53
+ - type: map_at_3
54
+ value: 45.721000000000004
55
+ - type: map_at_5
56
+ value: 48.413000000000004
57
+ - type: mrr_at_1
58
+ value: 34.424
59
+ - type: mrr_at_10
60
+ value: 50.68899999999999
61
+ - type: mrr_at_100
62
+ value: 51.437999999999995
63
+ - type: mrr_at_1000
64
+ value: 51.441
65
+ - type: mrr_at_3
66
+ value: 46.219
67
+ - type: mrr_at_5
68
+ value: 48.921
69
+ - type: ndcg_at_1
70
+ value: 33.073
71
+ - type: ndcg_at_10
72
+ value: 59.021
73
+ - type: ndcg_at_100
74
+ value: 61.902
75
+ - type: ndcg_at_1000
76
+ value: 61.983999999999995
77
+ - type: ndcg_at_3
78
+ value: 49.818
79
+ - type: ndcg_at_5
80
+ value: 54.644999999999996
81
+ - type: precision_at_1
82
+ value: 33.073
83
+ - type: precision_at_10
84
+ value: 8.684
85
+ - type: precision_at_100
86
+ value: 0.9900000000000001
87
+ - type: precision_at_1000
88
+ value: 0.1
89
+ - type: precision_at_3
90
+ value: 20.555
91
+ - type: precision_at_5
92
+ value: 14.666
93
+ - type: recall_at_1
94
+ value: 33.073
95
+ - type: recall_at_10
96
+ value: 86.842
97
+ - type: recall_at_100
98
+ value: 99.004
99
+ - type: recall_at_1000
100
+ value: 99.644
101
+ - type: recall_at_3
102
+ value: 61.663999999999994
103
+ - type: recall_at_5
104
+ value: 73.329
105
+ - task:
106
+ type: Classification
107
+ dataset:
108
+ type: PL-MTEB/cbd
109
+ name: MTEB CBD
110
+ config: default
111
+ split: test
112
+ revision: None
113
+ metrics:
114
+ - type: accuracy
115
+ value: 68.11
116
+ - type: ap
117
+ value: 20.916633959031266
118
+ - type: f1
119
+ value: 56.85804802205465
120
+ - task:
121
+ type: PairClassification
122
+ dataset:
123
+ type: PL-MTEB/cdsce-pairclassification
124
+ name: MTEB CDSC-E
125
+ config: default
126
+ split: test
127
+ revision: None
128
+ metrics:
129
+ - type: cos_sim_accuracy
130
+ value: 89.2
131
+ - type: cos_sim_ap
132
+ value: 79.1041156765933
133
+ - type: cos_sim_f1
134
+ value: 70.0
135
+ - type: cos_sim_precision
136
+ value: 74.11764705882354
137
+ - type: cos_sim_recall
138
+ value: 66.3157894736842
139
+ - type: dot_accuracy
140
+ value: 88.2
141
+ - type: dot_ap
142
+ value: 72.57183688228149
143
+ - type: dot_f1
144
+ value: 67.16417910447761
145
+ - type: dot_precision
146
+ value: 63.67924528301887
147
+ - type: dot_recall
148
+ value: 71.05263157894737
149
+ - type: euclidean_accuracy
150
+ value: 89.3
151
+ - type: euclidean_ap
152
+ value: 79.01345533432428
153
+ - type: euclidean_f1
154
+ value: 70.19498607242339
155
+ - type: euclidean_precision
156
+ value: 74.55621301775149
157
+ - type: euclidean_recall
158
+ value: 66.3157894736842
159
+ - type: manhattan_accuracy
160
+ value: 89.3
161
+ - type: manhattan_ap
162
+ value: 79.01671381791259
163
+ - type: manhattan_f1
164
+ value: 70.0280112044818
165
+ - type: manhattan_precision
166
+ value: 74.8502994011976
167
+ - type: manhattan_recall
168
+ value: 65.78947368421053
169
+ - type: max_accuracy
170
+ value: 89.3
171
+ - type: max_ap
172
+ value: 79.1041156765933
173
+ - type: max_f1
174
+ value: 70.19498607242339
175
+ - task:
176
+ type: STS
177
+ dataset:
178
+ type: PL-MTEB/cdscr-sts
179
+ name: MTEB CDSC-R
180
+ config: default
181
+ split: test
182
+ revision: None
183
+ metrics:
184
+ - type: cos_sim_pearson
185
+ value: 91.79559442663039
186
+ - type: cos_sim_spearman
187
+ value: 92.5438168962641
188
+ - type: euclidean_pearson
189
+ value: 92.02981265332856
190
+ - type: euclidean_spearman
191
+ value: 92.5548245733484
192
+ - type: manhattan_pearson
193
+ value: 91.95296287979178
194
+ - type: manhattan_spearman
195
+ value: 92.50279516120241
196
+ - task:
197
+ type: Retrieval
198
+ dataset:
199
+ type: dbpedia-pl
200
+ name: MTEB DBPedia-PL
201
+ config: default
202
+ split: test
203
+ revision: None
204
+ metrics:
205
+ - type: map_at_1
206
+ value: 7.829999999999999
207
+ - type: map_at_10
208
+ value: 16.616
209
+ - type: map_at_100
210
+ value: 23.629
211
+ - type: map_at_1000
212
+ value: 25.235999999999997
213
+ - type: map_at_3
214
+ value: 12.485
215
+ - type: map_at_5
216
+ value: 14.077
217
+ - type: mrr_at_1
218
+ value: 61.75000000000001
219
+ - type: mrr_at_10
220
+ value: 69.852
221
+ - type: mrr_at_100
222
+ value: 70.279
223
+ - type: mrr_at_1000
224
+ value: 70.294
225
+ - type: mrr_at_3
226
+ value: 68.375
227
+ - type: mrr_at_5
228
+ value: 69.187
229
+ - type: ndcg_at_1
230
+ value: 49.75
231
+ - type: ndcg_at_10
232
+ value: 36.217
233
+ - type: ndcg_at_100
234
+ value: 41.235
235
+ - type: ndcg_at_1000
236
+ value: 48.952
237
+ - type: ndcg_at_3
238
+ value: 41.669
239
+ - type: ndcg_at_5
240
+ value: 38.285000000000004
241
+ - type: precision_at_1
242
+ value: 61.5
243
+ - type: precision_at_10
244
+ value: 28.499999999999996
245
+ - type: precision_at_100
246
+ value: 9.572
247
+ - type: precision_at_1000
248
+ value: 2.025
249
+ - type: precision_at_3
250
+ value: 44.083
251
+ - type: precision_at_5
252
+ value: 36.3
253
+ - type: recall_at_1
254
+ value: 7.829999999999999
255
+ - type: recall_at_10
256
+ value: 21.462999999999997
257
+ - type: recall_at_100
258
+ value: 47.095
259
+ - type: recall_at_1000
260
+ value: 71.883
261
+ - type: recall_at_3
262
+ value: 13.891
263
+ - type: recall_at_5
264
+ value: 16.326999999999998
265
+ - task:
266
+ type: Retrieval
267
+ dataset:
268
+ type: fiqa-pl
269
+ name: MTEB FiQA-PL
270
+ config: default
271
+ split: test
272
+ revision: None
273
+ metrics:
274
+ - type: map_at_1
275
+ value: 16.950000000000003
276
+ - type: map_at_10
277
+ value: 27.422
278
+ - type: map_at_100
279
+ value: 29.146
280
+ - type: map_at_1000
281
+ value: 29.328
282
+ - type: map_at_3
283
+ value: 23.735999999999997
284
+ - type: map_at_5
285
+ value: 25.671
286
+ - type: mrr_at_1
287
+ value: 33.796
288
+ - type: mrr_at_10
289
+ value: 42.689
290
+ - type: mrr_at_100
291
+ value: 43.522
292
+ - type: mrr_at_1000
293
+ value: 43.563
294
+ - type: mrr_at_3
295
+ value: 40.226
296
+ - type: mrr_at_5
297
+ value: 41.685
298
+ - type: ndcg_at_1
299
+ value: 33.642
300
+ - type: ndcg_at_10
301
+ value: 35.008
302
+ - type: ndcg_at_100
303
+ value: 41.839
304
+ - type: ndcg_at_1000
305
+ value: 45.035
306
+ - type: ndcg_at_3
307
+ value: 31.358999999999998
308
+ - type: ndcg_at_5
309
+ value: 32.377
310
+ - type: precision_at_1
311
+ value: 33.642
312
+ - type: precision_at_10
313
+ value: 9.937999999999999
314
+ - type: precision_at_100
315
+ value: 1.685
316
+ - type: precision_at_1000
317
+ value: 0.22699999999999998
318
+ - type: precision_at_3
319
+ value: 21.142
320
+ - type: precision_at_5
321
+ value: 15.586
322
+ - type: recall_at_1
323
+ value: 16.950000000000003
324
+ - type: recall_at_10
325
+ value: 42.286
326
+ - type: recall_at_100
327
+ value: 68.51899999999999
328
+ - type: recall_at_1000
329
+ value: 87.471
330
+ - type: recall_at_3
331
+ value: 28.834
332
+ - type: recall_at_5
333
+ value: 34.274
334
+ - task:
335
+ type: Retrieval
336
+ dataset:
337
+ type: hotpotqa-pl
338
+ name: MTEB HotpotQA-PL
339
+ config: default
340
+ split: test
341
+ revision: None
342
+ metrics:
343
+ - type: map_at_1
344
+ value: 37.711
345
+ - type: map_at_10
346
+ value: 57.867999999999995
347
+ - type: map_at_100
348
+ value: 58.77
349
+ - type: map_at_1000
350
+ value: 58.836999999999996
351
+ - type: map_at_3
352
+ value: 54.400999999999996
353
+ - type: map_at_5
354
+ value: 56.564
355
+ - type: mrr_at_1
356
+ value: 75.449
357
+ - type: mrr_at_10
358
+ value: 81.575
359
+ - type: mrr_at_100
360
+ value: 81.783
361
+ - type: mrr_at_1000
362
+ value: 81.792
363
+ - type: mrr_at_3
364
+ value: 80.50399999999999
365
+ - type: mrr_at_5
366
+ value: 81.172
367
+ - type: ndcg_at_1
368
+ value: 75.422
369
+ - type: ndcg_at_10
370
+ value: 66.635
371
+ - type: ndcg_at_100
372
+ value: 69.85
373
+ - type: ndcg_at_1000
374
+ value: 71.179
375
+ - type: ndcg_at_3
376
+ value: 61.648
377
+ - type: ndcg_at_5
378
+ value: 64.412
379
+ - type: precision_at_1
380
+ value: 75.422
381
+ - type: precision_at_10
382
+ value: 13.962
383
+ - type: precision_at_100
384
+ value: 1.649
385
+ - type: precision_at_1000
386
+ value: 0.183
387
+ - type: precision_at_3
388
+ value: 39.172000000000004
389
+ - type: precision_at_5
390
+ value: 25.691000000000003
391
+ - type: recall_at_1
392
+ value: 37.711
393
+ - type: recall_at_10
394
+ value: 69.811
395
+ - type: recall_at_100
396
+ value: 82.471
397
+ - type: recall_at_1000
398
+ value: 91.29
399
+ - type: recall_at_3
400
+ value: 58.757999999999996
401
+ - type: recall_at_5
402
+ value: 64.227
403
+ - task:
404
+ type: Retrieval
405
+ dataset:
406
+ type: msmarco-pl
407
+ name: MTEB MSMARCO-PL
408
+ config: default
409
+ split: validation
410
+ revision: None
411
+ metrics:
412
+ - type: map_at_1
413
+ value: 17.033
414
+ - type: map_at_10
415
+ value: 27.242
416
+ - type: map_at_100
417
+ value: 28.451999999999998
418
+ - type: map_at_1000
419
+ value: 28.515
420
+ - type: map_at_3
421
+ value: 24.046
422
+ - type: map_at_5
423
+ value: 25.840999999999998
424
+ - type: mrr_at_1
425
+ value: 17.493
426
+ - type: mrr_at_10
427
+ value: 27.67
428
+ - type: mrr_at_100
429
+ value: 28.823999999999998
430
+ - type: mrr_at_1000
431
+ value: 28.881
432
+ - type: mrr_at_3
433
+ value: 24.529999999999998
434
+ - type: mrr_at_5
435
+ value: 26.27
436
+ - type: ndcg_at_1
437
+ value: 17.479
438
+ - type: ndcg_at_10
439
+ value: 33.048
440
+ - type: ndcg_at_100
441
+ value: 39.071
442
+ - type: ndcg_at_1000
443
+ value: 40.739999999999995
444
+ - type: ndcg_at_3
445
+ value: 26.493
446
+ - type: ndcg_at_5
447
+ value: 29.701
448
+ - type: precision_at_1
449
+ value: 17.479
450
+ - type: precision_at_10
451
+ value: 5.324
452
+ - type: precision_at_100
453
+ value: 0.8380000000000001
454
+ - type: precision_at_1000
455
+ value: 0.098
456
+ - type: precision_at_3
457
+ value: 11.408999999999999
458
+ - type: precision_at_5
459
+ value: 8.469999999999999
460
+ - type: recall_at_1
461
+ value: 17.033
462
+ - type: recall_at_10
463
+ value: 50.929
464
+ - type: recall_at_100
465
+ value: 79.262
466
+ - type: recall_at_1000
467
+ value: 92.239
468
+ - type: recall_at_3
469
+ value: 33.06
470
+ - type: recall_at_5
471
+ value: 40.747
472
+ - task:
473
+ type: Classification
474
+ dataset:
475
+ type: mteb/amazon_massive_intent
476
+ name: MTEB MassiveIntentClassification (pl)
477
+ config: pl
478
+ split: test
479
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
480
+ metrics:
481
+ - type: accuracy
482
+ value: 72.31002017484867
483
+ - type: f1
484
+ value: 69.61603671063031
485
+ - task:
486
+ type: Classification
487
+ dataset:
488
+ type: mteb/amazon_massive_scenario
489
+ name: MTEB MassiveScenarioClassification (pl)
490
+ config: pl
491
+ split: test
492
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
493
+ metrics:
494
+ - type: accuracy
495
+ value: 75.52790854068594
496
+ - type: f1
497
+ value: 75.4053872472259
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: nfcorpus-pl
502
+ name: MTEB NFCorpus-PL
503
+ config: default
504
+ split: test
505
+ revision: None
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 5.877000000000001
509
+ - type: map_at_10
510
+ value: 12.817
511
+ - type: map_at_100
512
+ value: 16.247
513
+ - type: map_at_1000
514
+ value: 17.683
515
+ - type: map_at_3
516
+ value: 9.334000000000001
517
+ - type: map_at_5
518
+ value: 10.886999999999999
519
+ - type: mrr_at_1
520
+ value: 45.201
521
+ - type: mrr_at_10
522
+ value: 52.7
523
+ - type: mrr_at_100
524
+ value: 53.425999999999995
525
+ - type: mrr_at_1000
526
+ value: 53.461000000000006
527
+ - type: mrr_at_3
528
+ value: 50.464
529
+ - type: mrr_at_5
530
+ value: 51.827
531
+ - type: ndcg_at_1
532
+ value: 41.949999999999996
533
+ - type: ndcg_at_10
534
+ value: 34.144999999999996
535
+ - type: ndcg_at_100
536
+ value: 31.556
537
+ - type: ndcg_at_1000
538
+ value: 40.265
539
+ - type: ndcg_at_3
540
+ value: 38.07
541
+ - type: ndcg_at_5
542
+ value: 36.571
543
+ - type: precision_at_1
544
+ value: 44.272
545
+ - type: precision_at_10
546
+ value: 25.697
547
+ - type: precision_at_100
548
+ value: 8.077
549
+ - type: precision_at_1000
550
+ value: 2.084
551
+ - type: precision_at_3
552
+ value: 36.016999999999996
553
+ - type: precision_at_5
554
+ value: 31.703
555
+ - type: recall_at_1
556
+ value: 5.877000000000001
557
+ - type: recall_at_10
558
+ value: 16.986
559
+ - type: recall_at_100
560
+ value: 32.719
561
+ - type: recall_at_1000
562
+ value: 63.763000000000005
563
+ - type: recall_at_3
564
+ value: 10.292
565
+ - type: recall_at_5
566
+ value: 12.886000000000001
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: nq-pl
571
+ name: MTEB NQ-PL
572
+ config: default
573
+ split: test
574
+ revision: None
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 25.476
578
+ - type: map_at_10
579
+ value: 38.67
580
+ - type: map_at_100
581
+ value: 39.784000000000006
582
+ - type: map_at_1000
583
+ value: 39.831
584
+ - type: map_at_3
585
+ value: 34.829
586
+ - type: map_at_5
587
+ value: 37.025000000000006
588
+ - type: mrr_at_1
589
+ value: 28.621000000000002
590
+ - type: mrr_at_10
591
+ value: 41.13
592
+ - type: mrr_at_100
593
+ value: 42.028
594
+ - type: mrr_at_1000
595
+ value: 42.059999999999995
596
+ - type: mrr_at_3
597
+ value: 37.877
598
+ - type: mrr_at_5
599
+ value: 39.763999999999996
600
+ - type: ndcg_at_1
601
+ value: 28.563
602
+ - type: ndcg_at_10
603
+ value: 45.654
604
+ - type: ndcg_at_100
605
+ value: 50.695
606
+ - type: ndcg_at_1000
607
+ value: 51.873999999999995
608
+ - type: ndcg_at_3
609
+ value: 38.359
610
+ - type: ndcg_at_5
611
+ value: 42.045
612
+ - type: precision_at_1
613
+ value: 28.563
614
+ - type: precision_at_10
615
+ value: 7.6450000000000005
616
+ - type: precision_at_100
617
+ value: 1.052
618
+ - type: precision_at_1000
619
+ value: 0.117
620
+ - type: precision_at_3
621
+ value: 17.458000000000002
622
+ - type: precision_at_5
623
+ value: 12.613
624
+ - type: recall_at_1
625
+ value: 25.476
626
+ - type: recall_at_10
627
+ value: 64.484
628
+ - type: recall_at_100
629
+ value: 86.96199999999999
630
+ - type: recall_at_1000
631
+ value: 95.872
632
+ - type: recall_at_3
633
+ value: 45.527
634
+ - type: recall_at_5
635
+ value: 54.029
636
+ - task:
637
+ type: Classification
638
+ dataset:
639
+ type: laugustyniak/abusive-clauses-pl
640
+ name: MTEB PAC
641
+ config: default
642
+ split: test
643
+ revision: None
644
+ metrics:
645
+ - type: accuracy
646
+ value: 65.87315377932232
647
+ - type: ap
648
+ value: 76.41966964416534
649
+ - type: f1
650
+ value: 63.64417488639012
651
+ - task:
652
+ type: PairClassification
653
+ dataset:
654
+ type: PL-MTEB/ppc-pairclassification
655
+ name: MTEB PPC
656
+ config: default
657
+ split: test
658
+ revision: None
659
+ metrics:
660
+ - type: cos_sim_accuracy
661
+ value: 87.7
662
+ - type: cos_sim_ap
663
+ value: 92.81319372631636
664
+ - type: cos_sim_f1
665
+ value: 90.04048582995952
666
+ - type: cos_sim_precision
667
+ value: 88.11410459587957
668
+ - type: cos_sim_recall
669
+ value: 92.05298013245033
670
+ - type: dot_accuracy
671
+ value: 75.0
672
+ - type: dot_ap
673
+ value: 83.63089957943261
674
+ - type: dot_f1
675
+ value: 80.76923076923077
676
+ - type: dot_precision
677
+ value: 75.43103448275862
678
+ - type: dot_recall
679
+ value: 86.9205298013245
680
+ - type: euclidean_accuracy
681
+ value: 87.7
682
+ - type: euclidean_ap
683
+ value: 92.94772245932825
684
+ - type: euclidean_f1
685
+ value: 90.10458567980692
686
+ - type: euclidean_precision
687
+ value: 87.63693270735524
688
+ - type: euclidean_recall
689
+ value: 92.71523178807946
690
+ - type: manhattan_accuracy
691
+ value: 87.8
692
+ - type: manhattan_ap
693
+ value: 92.95330512127123
694
+ - type: manhattan_f1
695
+ value: 90.08130081300813
696
+ - type: manhattan_precision
697
+ value: 88.49840255591054
698
+ - type: manhattan_recall
699
+ value: 91.72185430463577
700
+ - type: max_accuracy
701
+ value: 87.8
702
+ - type: max_ap
703
+ value: 92.95330512127123
704
+ - type: max_f1
705
+ value: 90.10458567980692
706
+ - task:
707
+ type: PairClassification
708
+ dataset:
709
+ type: PL-MTEB/psc-pairclassification
710
+ name: MTEB PSC
711
+ config: default
712
+ split: test
713
+ revision: None
714
+ metrics:
715
+ - type: cos_sim_accuracy
716
+ value: 96.19666048237477
717
+ - type: cos_sim_ap
718
+ value: 98.61237969571302
719
+ - type: cos_sim_f1
720
+ value: 93.77845220030349
721
+ - type: cos_sim_precision
722
+ value: 93.35347432024169
723
+ - type: cos_sim_recall
724
+ value: 94.20731707317073
725
+ - type: dot_accuracy
726
+ value: 94.89795918367348
727
+ - type: dot_ap
728
+ value: 97.02853491357943
729
+ - type: dot_f1
730
+ value: 91.85185185185186
731
+ - type: dot_precision
732
+ value: 89.33717579250721
733
+ - type: dot_recall
734
+ value: 94.51219512195121
735
+ - type: euclidean_accuracy
736
+ value: 96.38218923933209
737
+ - type: euclidean_ap
738
+ value: 98.58145584134218
739
+ - type: euclidean_f1
740
+ value: 94.04580152671755
741
+ - type: euclidean_precision
742
+ value: 94.18960244648318
743
+ - type: euclidean_recall
744
+ value: 93.90243902439023
745
+ - type: manhattan_accuracy
746
+ value: 96.47495361781077
747
+ - type: manhattan_ap
748
+ value: 98.6108221024781
749
+ - type: manhattan_f1
750
+ value: 94.18960244648318
751
+ - type: manhattan_precision
752
+ value: 94.47852760736197
753
+ - type: manhattan_recall
754
+ value: 93.90243902439023
755
+ - type: max_accuracy
756
+ value: 96.47495361781077
757
+ - type: max_ap
758
+ value: 98.61237969571302
759
+ - type: max_f1
760
+ value: 94.18960244648318
761
+ - task:
762
+ type: Classification
763
+ dataset:
764
+ type: PL-MTEB/polemo2_in
765
+ name: MTEB PolEmo2.0-IN
766
+ config: default
767
+ split: test
768
+ revision: None
769
+ metrics:
770
+ - type: accuracy
771
+ value: 71.73130193905818
772
+ - type: f1
773
+ value: 71.17731918813324
774
+ - task:
775
+ type: Classification
776
+ dataset:
777
+ type: PL-MTEB/polemo2_out
778
+ name: MTEB PolEmo2.0-OUT
779
+ config: default
780
+ split: test
781
+ revision: None
782
+ metrics:
783
+ - type: accuracy
784
+ value: 46.59919028340081
785
+ - type: f1
786
+ value: 37.216392949948954
787
+ - task:
788
+ type: Retrieval
789
+ dataset:
790
+ type: quora-pl
791
+ name: MTEB Quora-PL
792
+ config: default
793
+ split: test
794
+ revision: None
795
+ metrics:
796
+ - type: map_at_1
797
+ value: 66.134
798
+ - type: map_at_10
799
+ value: 80.19
800
+ - type: map_at_100
801
+ value: 80.937
802
+ - type: map_at_1000
803
+ value: 80.95599999999999
804
+ - type: map_at_3
805
+ value: 77.074
806
+ - type: map_at_5
807
+ value: 79.054
808
+ - type: mrr_at_1
809
+ value: 75.88000000000001
810
+ - type: mrr_at_10
811
+ value: 83.226
812
+ - type: mrr_at_100
813
+ value: 83.403
814
+ - type: mrr_at_1000
815
+ value: 83.406
816
+ - type: mrr_at_3
817
+ value: 82.03200000000001
818
+ - type: mrr_at_5
819
+ value: 82.843
820
+ - type: ndcg_at_1
821
+ value: 75.94
822
+ - type: ndcg_at_10
823
+ value: 84.437
824
+ - type: ndcg_at_100
825
+ value: 86.13
826
+ - type: ndcg_at_1000
827
+ value: 86.29299999999999
828
+ - type: ndcg_at_3
829
+ value: 81.07799999999999
830
+ - type: ndcg_at_5
831
+ value: 83.0
832
+ - type: precision_at_1
833
+ value: 75.94
834
+ - type: precision_at_10
835
+ value: 12.953999999999999
836
+ - type: precision_at_100
837
+ value: 1.514
838
+ - type: precision_at_1000
839
+ value: 0.156
840
+ - type: precision_at_3
841
+ value: 35.61
842
+ - type: precision_at_5
843
+ value: 23.652
844
+ - type: recall_at_1
845
+ value: 66.134
846
+ - type: recall_at_10
847
+ value: 92.991
848
+ - type: recall_at_100
849
+ value: 99.003
850
+ - type: recall_at_1000
851
+ value: 99.86
852
+ - type: recall_at_3
853
+ value: 83.643
854
+ - type: recall_at_5
855
+ value: 88.81099999999999
856
+ - task:
857
+ type: Retrieval
858
+ dataset:
859
+ type: scidocs-pl
860
+ name: MTEB SCIDOCS-PL
861
+ config: default
862
+ split: test
863
+ revision: None
864
+ metrics:
865
+ - type: map_at_1
866
+ value: 4.183
867
+ - type: map_at_10
868
+ value: 10.626
869
+ - type: map_at_100
870
+ value: 12.485
871
+ - type: map_at_1000
872
+ value: 12.793
873
+ - type: map_at_3
874
+ value: 7.531000000000001
875
+ - type: map_at_5
876
+ value: 9.037
877
+ - type: mrr_at_1
878
+ value: 20.5
879
+ - type: mrr_at_10
880
+ value: 30.175
881
+ - type: mrr_at_100
882
+ value: 31.356
883
+ - type: mrr_at_1000
884
+ value: 31.421
885
+ - type: mrr_at_3
886
+ value: 26.900000000000002
887
+ - type: mrr_at_5
888
+ value: 28.689999999999998
889
+ - type: ndcg_at_1
890
+ value: 20.599999999999998
891
+ - type: ndcg_at_10
892
+ value: 17.84
893
+ - type: ndcg_at_100
894
+ value: 25.518
895
+ - type: ndcg_at_1000
896
+ value: 31.137999999999998
897
+ - type: ndcg_at_3
898
+ value: 16.677
899
+ - type: ndcg_at_5
900
+ value: 14.641000000000002
901
+ - type: precision_at_1
902
+ value: 20.599999999999998
903
+ - type: precision_at_10
904
+ value: 9.3
905
+ - type: precision_at_100
906
+ value: 2.048
907
+ - type: precision_at_1000
908
+ value: 0.33999999999999997
909
+ - type: precision_at_3
910
+ value: 15.533
911
+ - type: precision_at_5
912
+ value: 12.839999999999998
913
+ - type: recall_at_1
914
+ value: 4.183
915
+ - type: recall_at_10
916
+ value: 18.862000000000002
917
+ - type: recall_at_100
918
+ value: 41.592
919
+ - type: recall_at_1000
920
+ value: 69.037
921
+ - type: recall_at_3
922
+ value: 9.443
923
+ - type: recall_at_5
924
+ value: 13.028
925
+ - task:
926
+ type: PairClassification
927
+ dataset:
928
+ type: PL-MTEB/sicke-pl-pairclassification
929
+ name: MTEB SICK-E-PL
930
+ config: default
931
+ split: test
932
+ revision: None
933
+ metrics:
934
+ - type: cos_sim_accuracy
935
+ value: 86.32286995515696
936
+ - type: cos_sim_ap
937
+ value: 82.04302619416443
938
+ - type: cos_sim_f1
939
+ value: 74.95572086432874
940
+ - type: cos_sim_precision
941
+ value: 74.55954897815363
942
+ - type: cos_sim_recall
943
+ value: 75.35612535612536
944
+ - type: dot_accuracy
945
+ value: 83.9176518548716
946
+ - type: dot_ap
947
+ value: 76.8608733580272
948
+ - type: dot_f1
949
+ value: 72.31936654569449
950
+ - type: dot_precision
951
+ value: 67.36324523663184
952
+ - type: dot_recall
953
+ value: 78.06267806267806
954
+ - type: euclidean_accuracy
955
+ value: 86.32286995515696
956
+ - type: euclidean_ap
957
+ value: 81.9648986659308
958
+ - type: euclidean_f1
959
+ value: 74.93796526054591
960
+ - type: euclidean_precision
961
+ value: 74.59421312632321
962
+ - type: euclidean_recall
963
+ value: 75.28490028490027
964
+ - type: manhattan_accuracy
965
+ value: 86.30248675091724
966
+ - type: manhattan_ap
967
+ value: 81.92853980116878
968
+ - type: manhattan_f1
969
+ value: 74.80968858131489
970
+ - type: manhattan_precision
971
+ value: 72.74562584118439
972
+ - type: manhattan_recall
973
+ value: 76.99430199430199
974
+ - type: max_accuracy
975
+ value: 86.32286995515696
976
+ - type: max_ap
977
+ value: 82.04302619416443
978
+ - type: max_f1
979
+ value: 74.95572086432874
980
+ - task:
981
+ type: STS
982
+ dataset:
983
+ type: PL-MTEB/sickr-pl-sts
984
+ name: MTEB SICK-R-PL
985
+ config: default
986
+ split: test
987
+ revision: None
988
+ metrics:
989
+ - type: cos_sim_pearson
990
+ value: 83.07566183637853
991
+ - type: cos_sim_spearman
992
+ value: 79.20198022242548
993
+ - type: euclidean_pearson
994
+ value: 81.27875473517936
995
+ - type: euclidean_spearman
996
+ value: 79.21560102311153
997
+ - type: manhattan_pearson
998
+ value: 81.21559474880459
999
+ - type: manhattan_spearman
1000
+ value: 79.1537846814979
1001
+ - task:
1002
+ type: STS
1003
+ dataset:
1004
+ type: mteb/sts22-crosslingual-sts
1005
+ name: MTEB STS22 (pl)
1006
+ config: pl
1007
+ split: test
1008
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1009
+ metrics:
1010
+ - type: cos_sim_pearson
1011
+ value: 36.39657573900194
1012
+ - type: cos_sim_spearman
1013
+ value: 40.36403461037013
1014
+ - type: euclidean_pearson
1015
+ value: 29.143416004776316
1016
+ - type: euclidean_spearman
1017
+ value: 40.43197841306375
1018
+ - type: manhattan_pearson
1019
+ value: 29.18632337290767
1020
+ - type: manhattan_spearman
1021
+ value: 40.50563343395481
1022
+ - task:
1023
+ type: Retrieval
1024
+ dataset:
1025
+ type: scifact-pl
1026
+ name: MTEB SciFact-PL
1027
+ config: default
1028
+ split: test
1029
+ revision: None
1030
+ metrics:
1031
+ - type: map_at_1
1032
+ value: 49.428
1033
+ - type: map_at_10
1034
+ value: 60.423
1035
+ - type: map_at_100
1036
+ value: 61.037
1037
+ - type: map_at_1000
1038
+ value: 61.065999999999995
1039
+ - type: map_at_3
1040
+ value: 56.989000000000004
1041
+ - type: map_at_5
1042
+ value: 59.041999999999994
1043
+ - type: mrr_at_1
1044
+ value: 52.666999999999994
1045
+ - type: mrr_at_10
1046
+ value: 61.746
1047
+ - type: mrr_at_100
1048
+ value: 62.273
1049
+ - type: mrr_at_1000
1050
+ value: 62.300999999999995
1051
+ - type: mrr_at_3
1052
+ value: 59.278
1053
+ - type: mrr_at_5
1054
+ value: 60.611000000000004
1055
+ - type: ndcg_at_1
1056
+ value: 52.333
1057
+ - type: ndcg_at_10
1058
+ value: 65.75
1059
+ - type: ndcg_at_100
1060
+ value: 68.566
1061
+ - type: ndcg_at_1000
1062
+ value: 69.314
1063
+ - type: ndcg_at_3
1064
+ value: 59.768
1065
+ - type: ndcg_at_5
1066
+ value: 62.808
1067
+ - type: precision_at_1
1068
+ value: 52.333
1069
+ - type: precision_at_10
1070
+ value: 9.167
1071
+ - type: precision_at_100
1072
+ value: 1.0630000000000002
1073
+ - type: precision_at_1000
1074
+ value: 0.11299999999999999
1075
+ - type: precision_at_3
1076
+ value: 23.778
1077
+ - type: precision_at_5
1078
+ value: 16.2
1079
+ - type: recall_at_1
1080
+ value: 49.428
1081
+ - type: recall_at_10
1082
+ value: 81.07799999999999
1083
+ - type: recall_at_100
1084
+ value: 93.93299999999999
1085
+ - type: recall_at_1000
1086
+ value: 99.667
1087
+ - type: recall_at_3
1088
+ value: 65.061
1089
+ - type: recall_at_5
1090
+ value: 72.667
1091
+ - task:
1092
+ type: Retrieval
1093
+ dataset:
1094
+ type: trec-covid-pl
1095
+ name: MTEB TRECCOVID-PL
1096
+ config: default
1097
+ split: test
1098
+ revision: None
1099
+ metrics:
1100
+ - type: map_at_1
1101
+ value: 0.22100000000000003
1102
+ - type: map_at_10
1103
+ value: 1.788
1104
+ - type: map_at_100
1105
+ value: 9.937
1106
+ - type: map_at_1000
1107
+ value: 24.762999999999998
1108
+ - type: map_at_3
1109
+ value: 0.579
1110
+ - type: map_at_5
1111
+ value: 0.947
1112
+ - type: mrr_at_1
1113
+ value: 78.0
1114
+ - type: mrr_at_10
1115
+ value: 88.067
1116
+ - type: mrr_at_100
1117
+ value: 88.067
1118
+ - type: mrr_at_1000
1119
+ value: 88.067
1120
+ - type: mrr_at_3
1121
+ value: 87.667
1122
+ - type: mrr_at_5
1123
+ value: 88.067
1124
+ - type: ndcg_at_1
1125
+ value: 76.0
1126
+ - type: ndcg_at_10
1127
+ value: 71.332
1128
+ - type: ndcg_at_100
1129
+ value: 54.80500000000001
1130
+ - type: ndcg_at_1000
1131
+ value: 49.504999999999995
1132
+ - type: ndcg_at_3
1133
+ value: 73.693
1134
+ - type: ndcg_at_5
1135
+ value: 73.733
1136
+ - type: precision_at_1
1137
+ value: 82.0
1138
+ - type: precision_at_10
1139
+ value: 76.8
1140
+ - type: precision_at_100
1141
+ value: 56.68
1142
+ - type: precision_at_1000
1143
+ value: 22.236
1144
+ - type: precision_at_3
1145
+ value: 78.667
1146
+ - type: precision_at_5
1147
+ value: 79.2
1148
+ - type: recall_at_1
1149
+ value: 0.22100000000000003
1150
+ - type: recall_at_10
1151
+ value: 2.033
1152
+ - type: recall_at_100
1153
+ value: 13.431999999999999
1154
+ - type: recall_at_1000
1155
+ value: 46.913
1156
+ - type: recall_at_3
1157
+ value: 0.625
1158
+ - type: recall_at_5
1159
+ value: 1.052
1160
  language: pl
1161
  license: apache-2.0
1162
  widget: