scronberg commited on
Commit
c915ebf
1 Parent(s): 1c5559a

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1703.12 +/- 532.84
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5baf6f01464ece769795e06d506991933a7be2531c9c306d233daff0bff6151
3
+ size 129298
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66cdb893f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66cdb89480>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66cdb89510>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66cdb895a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f66cdb89630>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f66cdb896c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f66cdb89750>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66cdb897e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f66cdb89870>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66cdb89900>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66cdb89990>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66cdb89a20>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f66cdb86f00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674755997825377129,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3Njcm9uYmVyZy9taW5pY29uZGEzL2VudnMvaGYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9zY3JvbmJlcmcvbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAI69j48vhRAXNgIwEgJrT+hYZi/7ncUP7Usfb1pgKK/eGEfv/VRYkAnEuI/YcWpPmVgebxmuMG+ikMcP6H5iT9IOaK8dm8LvzPX3D5hhGk/AM8svz6hGjx/YVK/OhwDvEDKUT9d6+I+A3sXPxVWi7/Xc0FA0gHiP6fygMC4dZu/RXQlP798Vz1yvq3A5MKOP7+5E8B4q7S7ta9bv2YuCTwf79++z6/ZP7EYb8BhlJG+lWUmvwD93j/5yiQ/xXQZv0LLSEDn0HU/5ILVPjjF+j+7MZy/XeviPnhR2L8VVou/z4stPjthlj+O4MI+sDc0P7aijb+FBUo//iELP69JPr9VZc29/aJNvvp/mT9+Td09G7NGvxVo2796/6K+xgx6v7Icl71OQ56/h8k2P+E5HTyYxiy/LJAzPGmqVL+MPIe/QMpRP13r4j4Dexc/FVaLv8WChD+REcs/0JPGPLBViT9V/NO8Lazcvwbppz/e8mG//zkwP74QiL+9/gtA7KbuPiChl7+qooE/OAvPv5HiecA44Le/Odh7PxIpSD8LA1NArg68PS4HKUBPfEq/5xahPrsxnL9ZZxDAA3sXPxVWi7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOffw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdijOvQAAAABhrN2/AAAAAK3Ppz0AAAAA/hkAQAAAAAC8hac9AAAAAPGb6z8AAAAA9BllvQAAAAAuPdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvhfMtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLTuID0AAAAAgjbgvwAAAAAZrlG9AAAAAInj+D8AAAAAVHmdvQAAAAAtqOw/AAAAAHQGuz0AAAAA56TgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHINAbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBL2KW9AAAAAMYJAcAAAAAAfKngvQAAAACWdt8/AAAAAEURZjwAAAAAZ8LfPwAAAAAmW5Y9AAAAABt1/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8llGyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/ajpPQAAAADVjO6/AAAAAEcb8L0AAAAABbjiPwAAAAAK/gQ+AAAAADSr/T8AAAAAjyjTvQAAAAA+Ct6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ31Ip7TlT6MAWyUTegDjAF0lEdAoXFXxlQMyHV9lChoBkdAnaguqvNeMWgHTegDaAhHQKFz/ky1uzh1fZQoaAZHQJxcsMBp5/toB03oA2gIR0ChdUI+4b0fdX2UKGgGR0CfJDrI5o4/aAdN6ANoCEdAoXWJuyeI23V9lChoBkdAnKJSsbNr02gHTegDaAhHQKF6R0aIeo11fZQoaAZHQJ9NHZK3/gloB03oA2gIR0ChfPeFUQ05dX2UKGgGR0CaAv1jy4FzaAdN6ANoCEdAoX43zg/C7HV9lChoBkdAmW+3LzPKMmgHTegDaAhHQKF+gx5cC5p1fZQoaAZHQJ4SnxBmf5FoB03oA2gIR0Chgz0Mw1zidX2UKGgGR0CdSZQbdadMaAdN6ANoCEdAoYXl9Wp6yHV9lChoBkdAneMUiUxEfGgHTegDaAhHQKGHLv863iJ1fZQoaAZHQJ3Y9tALRa5oB03oA2gIR0Chh3koF3Y+dX2UKGgGR0CbkyEW69TQaAdN6ANoCEdAoYxA4ACGOHV9lChoBkdAnZYegYgq3GgHTegDaAhHQKGO3FfiPyV1fZQoaAZHQJuzb2f02+BoB03oA2gIR0ChkB1y/9HddX2UKGgGR0CdKCNJOFg2aAdN6ANoCEdAoZBn0TURWnV9lChoBkdAm8cUSVW0Z2gHTegDaAhHQKGVOxiXpnp1fZQoaAZHQJw88gkka/BoB03oA2gIR0Chl9V1GLDRdX2UKGgGR0CbxdsU7CBPaAdN6ANoCEdAoZkcDGLk0nV9lChoBkdAk+UjhDPWx2gHTegDaAhHQKGZat4A0bd1fZQoaAZHQJxWXP5YYBNoB03oA2gIR0ChnjmWD6FedX2UKGgGR0CchaRf4REnaAdN6ANoCEdAoaDP80k4WHV9lChoBkdAmem5MURFqmgHTegDaAhHQKGiDundfsx1fZQoaAZHQJjGcoiLVFxoB03oA2gIR0Cholk/KQq7dX2UKGgGR0Ca8tV+Zw4saAdN6ANoCEdAoacrPOY6XHV9lChoBkdAnRbCsS00FmgHTegDaAhHQKGp/5le4Td1fZQoaAZHQJzdhRtP559oB03oA2gIR0Chq5Q7DEWJdX2UKGgGR0CbFuX7+DODaAdN6ANoCEdAoavqd+Xqq3V9lChoBkdAm4HXoLXtjWgHTegDaAhHQKGwz5nlGPR1fZQoaAZHQJrggwudwvRoB03oA2gIR0Chs4nOB19wdX2UKGgGR0CZL0nnuAqeaAdN6ANoCEdAobTnVTaTOnV9lChoBkdAmtwML4N7SmgHTegDaAhHQKG1OSzPa+N1fZQoaAZHQJS1g/MW43FoB03oA2gIR0Chuo9LYf4idX2UKGgGR0CYuydI5HVgaAdN6ANoCEdAob1lGoaUA3V9lChoBkdAluYayfL9uWgHTegDaAhHQKG/KxoIv8J1fZQoaAZHQJT+P4cm0E5oB03oA2gIR0Chv4XLFGXpdX2UKGgGR0CV5wT2WY4RaAdN6ANoCEdAocSe1jRUm3V9lChoBkdAmpdITbnHN2gHTegDaAhHQKHHb/+85CF1fZQoaAZHQJewfu2JBPdoB03oA2gIR0ChyM5x7zCldX2UKGgGR0CYzUZ/CqIaaAdN6ANoCEdAockcdq+JxnV9lChoBkdAncFEXtShrWgHTegDaAhHQKHN7Du0CzV1fZQoaAZHQJmkGGdqcmVoB03oA2gIR0Ch0JvZIxxldX2UKGgGR0CZiJ89fTkRaAdN6ANoCEdAodHtMRHww3V9lChoBkdAmP9malUIcGgHTegDaAhHQKHSOE7nxKB1fZQoaAZHQJizXcSGrS5oB03oA2gIR0Ch1zHoX9BKdX2UKGgGR0CcPSm9xp+MaAdN6ANoCEdAodnbJ6po9XV9lChoBkdAm0SonrpqymgHTegDaAhHQKHbKQPqcEx1fZQoaAZHQJPcQDV6NVBoB03oA2gIR0Ch23McIZ62dX2UKGgGR0Cagm8Djin6aAdN6ANoCEdAoeA8mOU+tHV9lChoBkdAncL5JGvwE2gHTegDaAhHQKHi31V5rxl1fZQoaAZHQJs4jAO8TSNoB03oA2gIR0Ch5ChDG96DdX2UKGgGR0CdHA1PWQOnaAdN6ANoCEdAoeR1PtUn5XV9lChoBkdAmfjjBMzuW2gHTegDaAhHQKHpaAIY3vR1fZQoaAZHQJyxenl4keJoB03oA2gIR0Ch7DwyqMm4dX2UKGgGR0Cau+3Zf2K3aAdN6ANoCEdAoe2ZoduHe3V9lChoBkdAkpNIDTz/ZWgHTegDaAhHQKHt78Lront1fZQoaAZHQJjExEb5uZVoB03oA2gIR0Ch8r3Kji4sdX2UKGgGR0CYAPW8yvcKaAdN6ANoCEdAofVeR3eN1nV9lChoBkdAnK88AvL5h2gHTegDaAhHQKH2nhLGrCF1fZQoaAZHQJRMBpfx+a1oB03oA2gIR0Ch9uT0xubadX2UKGgGR0CeDXkadc0MaAdN6ANoCEdAofvUV8CxNnV9lChoBkdAmtpg3Lmp2mgHTegDaAhHQKH+eXWvr4Z1fZQoaAZHQJlSB65XlsBoB03oA2gIR0Ch/7xMvh60dX2UKGgGR0Cb4PXiiqQzaAdN6ANoCEdAogAGH+Idl3V9lChoBkdAm2mt0vGp/GgHTegDaAhHQKIE3Wvr4WV1fZQoaAZHQJi8juMMqjJoB03oA2gIR0CiB4oKc/dJdX2UKGgGR0CSIJPLxI8RaAdN6ANoCEdAogjTg0j1PHV9lChoBkdAlg2MIAwPAmgHTegDaAhHQKIJHybQTmJ1fZQoaAZHQJrPf9YOlO5oB03oA2gIR0CiDeNw71ZldX2UKGgGR0Cd1HzreIl/aAdN6ANoCEdAohCAk3S8anV9lChoBkdAmLRd+TeO42gHTegDaAhHQKIRvTPSlWR1fZQoaAZHQJwFjshPj4poB03oA2gIR0CiEgpDNQj2dX2UKGgGR0CaMmFLWZqmaAdN6ANoCEdAoha1ktmL+HV9lChoBkdAmZbaUiY9gWgHTegDaAhHQKIZWwDeTFF1fZQoaAZHQJsT2rQw9JVoB03oA2gIR0CiGqeWWyC4dX2UKGgGR0CbYssByS3caAdN6ANoCEdAohrzmOlwcnV9lChoBkdAm0pSCaqjrWgHTegDaAhHQKIfu/9pAUt1fZQoaAZHQJdRlHww0wdoB03oA2gIR0CiIk+/Yao/dX2UKGgGR0CWhgJ+DvmYaAdN6ANoCEdAoiORb4agmXV9lChoBkdAjJZBvaURnWgHTegDaAhHQKIj3K1XvH91fZQoaAZHQJmHNtBOYY1oB03oA2gIR0CiKKej/MnrdX2UKGgGR0COtm0dBBzFaAdN6ANoCEdAoitNrdnCf3V9lChoBkdAk4ZwPVd5ZGgHTegDaAhHQKIskA9V3ll1fZQoaAZHQJQb6ih37k5oB03oA2gIR0CiLNqtYB/7dX2UKGgGR0Cc3yebd8AraAdN6ANoCEdAojGc+/xlQXV9lChoBkdAelibgjyFwmgHTegDaAhHQKI0QILPUrl1fZQoaAZHQI3by97F85VoB03oA2gIR0CiNX1oHs1LdX2UKGgGR0CCdYTXarWAaAdN6ANoCEdAojXDU1AJLXV9lChoBkdAlyo22gFotmgHTegDaAhHQKI6hgZTAFh1fZQoaAZHQHSjQ7kn1FpoB03oA2gIR0CiPSy5Zr57dX2UKGgGR0CWwewrlNlAaAdN6ANoCEdAoj5ukFfReHV9lChoBkdAmBGmuHN5dGgHTegDaAhHQKI+u6xPfsN1fZQoaAZHQJlUX1RLsa9oB03oA2gIR0CiQ45aePJadX2UKGgGR0CbWbtSQ5mzaAdN6ANoCEdAokZCL0jC53V9lChoBkdAnIrXMQmNR2gHTegDaAhHQKJHjXvH93t1fZQoaAZHQJJ6EM2FWXFoB03oA2gIR0CiR9iyyD7JdX2UKGgGR0CcqsZTyauwaAdN6ANoCEdAoky3/WDpT3V9lChoBkdAnL9FjAi3X2gHTegDaAhHQKJPc4axX4l1fZQoaAZHQImLa4z7/GVoB03oA2gIR0CiULmhdt2tdX2UKGgGR0CYDkARkEs8aAdN6ANoCEdAolEDQXyiEnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f308dbe5726b1f553ea42e5fdd01fcb5ec9f8a3cea6ec02d02dd1918718cee79
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c1c4a35b239034163e102cefeaccabde8ed7109adcd92184a939086411e8a05
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.31 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.12.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.3
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66cdb893f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66cdb89480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66cdb89510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66cdb895a0>", "_build": "<function ActorCriticPolicy._build at 0x7f66cdb89630>", "forward": "<function ActorCriticPolicy.forward at 0x7f66cdb896c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f66cdb89750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66cdb897e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f66cdb89870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66cdb89900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66cdb89990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66cdb89a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f66cdb86f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674755997825377129, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3Njcm9uYmVyZy9taW5pY29uZGEzL2VudnMvaGYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9zY3JvbmJlcmcvbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAI69j48vhRAXNgIwEgJrT+hYZi/7ncUP7Usfb1pgKK/eGEfv/VRYkAnEuI/YcWpPmVgebxmuMG+ikMcP6H5iT9IOaK8dm8LvzPX3D5hhGk/AM8svz6hGjx/YVK/OhwDvEDKUT9d6+I+A3sXPxVWi7/Xc0FA0gHiP6fygMC4dZu/RXQlP798Vz1yvq3A5MKOP7+5E8B4q7S7ta9bv2YuCTwf79++z6/ZP7EYb8BhlJG+lWUmvwD93j/5yiQ/xXQZv0LLSEDn0HU/5ILVPjjF+j+7MZy/XeviPnhR2L8VVou/z4stPjthlj+O4MI+sDc0P7aijb+FBUo//iELP69JPr9VZc29/aJNvvp/mT9+Td09G7NGvxVo2796/6K+xgx6v7Icl71OQ56/h8k2P+E5HTyYxiy/LJAzPGmqVL+MPIe/QMpRP13r4j4Dexc/FVaLv8WChD+REcs/0JPGPLBViT9V/NO8Lazcvwbppz/e8mG//zkwP74QiL+9/gtA7KbuPiChl7+qooE/OAvPv5HiecA44Le/Odh7PxIpSD8LA1NArg68PS4HKUBPfEq/5xahPrsxnL9ZZxDAA3sXPxVWi7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOffw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdijOvQAAAABhrN2/AAAAAK3Ppz0AAAAA/hkAQAAAAAC8hac9AAAAAPGb6z8AAAAA9BllvQAAAAAuPdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvhfMtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLTuID0AAAAAgjbgvwAAAAAZrlG9AAAAAInj+D8AAAAAVHmdvQAAAAAtqOw/AAAAAHQGuz0AAAAA56TgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHINAbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBL2KW9AAAAAMYJAcAAAAAAfKngvQAAAACWdt8/AAAAAEURZjwAAAAAZ8LfPwAAAAAmW5Y9AAAAABt1/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8llGyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/ajpPQAAAADVjO6/AAAAAEcb8L0AAAAABbjiPwAAAAAK/gQ+AAAAADSr/T8AAAAAjyjTvQAAAAA+Ct6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ31Ip7TlT6MAWyUTegDjAF0lEdAoXFXxlQMyHV9lChoBkdAnaguqvNeMWgHTegDaAhHQKFz/ky1uzh1fZQoaAZHQJxcsMBp5/toB03oA2gIR0ChdUI+4b0fdX2UKGgGR0CfJDrI5o4/aAdN6ANoCEdAoXWJuyeI23V9lChoBkdAnKJSsbNr02gHTegDaAhHQKF6R0aIeo11fZQoaAZHQJ9NHZK3/gloB03oA2gIR0ChfPeFUQ05dX2UKGgGR0CaAv1jy4FzaAdN6ANoCEdAoX43zg/C7HV9lChoBkdAmW+3LzPKMmgHTegDaAhHQKF+gx5cC5p1fZQoaAZHQJ4SnxBmf5FoB03oA2gIR0Chgz0Mw1zidX2UKGgGR0CdSZQbdadMaAdN6ANoCEdAoYXl9Wp6yHV9lChoBkdAneMUiUxEfGgHTegDaAhHQKGHLv863iJ1fZQoaAZHQJ3Y9tALRa5oB03oA2gIR0Chh3koF3Y+dX2UKGgGR0CbkyEW69TQaAdN6ANoCEdAoYxA4ACGOHV9lChoBkdAnZYegYgq3GgHTegDaAhHQKGO3FfiPyV1fZQoaAZHQJuzb2f02+BoB03oA2gIR0ChkB1y/9HddX2UKGgGR0CdKCNJOFg2aAdN6ANoCEdAoZBn0TURWnV9lChoBkdAm8cUSVW0Z2gHTegDaAhHQKGVOxiXpnp1fZQoaAZHQJw88gkka/BoB03oA2gIR0Chl9V1GLDRdX2UKGgGR0CbxdsU7CBPaAdN6ANoCEdAoZkcDGLk0nV9lChoBkdAk+UjhDPWx2gHTegDaAhHQKGZat4A0bd1fZQoaAZHQJxWXP5YYBNoB03oA2gIR0ChnjmWD6FedX2UKGgGR0CchaRf4REnaAdN6ANoCEdAoaDP80k4WHV9lChoBkdAmem5MURFqmgHTegDaAhHQKGiDundfsx1fZQoaAZHQJjGcoiLVFxoB03oA2gIR0Cholk/KQq7dX2UKGgGR0Ca8tV+Zw4saAdN6ANoCEdAoacrPOY6XHV9lChoBkdAnRbCsS00FmgHTegDaAhHQKGp/5le4Td1fZQoaAZHQJzdhRtP559oB03oA2gIR0Chq5Q7DEWJdX2UKGgGR0CbFuX7+DODaAdN6ANoCEdAoavqd+Xqq3V9lChoBkdAm4HXoLXtjWgHTegDaAhHQKGwz5nlGPR1fZQoaAZHQJrggwudwvRoB03oA2gIR0Chs4nOB19wdX2UKGgGR0CZL0nnuAqeaAdN6ANoCEdAobTnVTaTOnV9lChoBkdAmtwML4N7SmgHTegDaAhHQKG1OSzPa+N1fZQoaAZHQJS1g/MW43FoB03oA2gIR0Chuo9LYf4idX2UKGgGR0CYuydI5HVgaAdN6ANoCEdAob1lGoaUA3V9lChoBkdAluYayfL9uWgHTegDaAhHQKG/KxoIv8J1fZQoaAZHQJT+P4cm0E5oB03oA2gIR0Chv4XLFGXpdX2UKGgGR0CV5wT2WY4RaAdN6ANoCEdAocSe1jRUm3V9lChoBkdAmpdITbnHN2gHTegDaAhHQKHHb/+85CF1fZQoaAZHQJewfu2JBPdoB03oA2gIR0ChyM5x7zCldX2UKGgGR0CYzUZ/CqIaaAdN6ANoCEdAockcdq+JxnV9lChoBkdAncFEXtShrWgHTegDaAhHQKHN7Du0CzV1fZQoaAZHQJmkGGdqcmVoB03oA2gIR0Ch0JvZIxxldX2UKGgGR0CZiJ89fTkRaAdN6ANoCEdAodHtMRHww3V9lChoBkdAmP9malUIcGgHTegDaAhHQKHSOE7nxKB1fZQoaAZHQJizXcSGrS5oB03oA2gIR0Ch1zHoX9BKdX2UKGgGR0CcPSm9xp+MaAdN6ANoCEdAodnbJ6po9XV9lChoBkdAm0SonrpqymgHTegDaAhHQKHbKQPqcEx1fZQoaAZHQJPcQDV6NVBoB03oA2gIR0Ch23McIZ62dX2UKGgGR0Cagm8Djin6aAdN6ANoCEdAoeA8mOU+tHV9lChoBkdAncL5JGvwE2gHTegDaAhHQKHi31V5rxl1fZQoaAZHQJs4jAO8TSNoB03oA2gIR0Ch5ChDG96DdX2UKGgGR0CdHA1PWQOnaAdN6ANoCEdAoeR1PtUn5XV9lChoBkdAmfjjBMzuW2gHTegDaAhHQKHpaAIY3vR1fZQoaAZHQJyxenl4keJoB03oA2gIR0Ch7DwyqMm4dX2UKGgGR0Cau+3Zf2K3aAdN6ANoCEdAoe2ZoduHe3V9lChoBkdAkpNIDTz/ZWgHTegDaAhHQKHt78Lront1fZQoaAZHQJjExEb5uZVoB03oA2gIR0Ch8r3Kji4sdX2UKGgGR0CYAPW8yvcKaAdN6ANoCEdAofVeR3eN1nV9lChoBkdAnK88AvL5h2gHTegDaAhHQKH2nhLGrCF1fZQoaAZHQJRMBpfx+a1oB03oA2gIR0Ch9uT0xubadX2UKGgGR0CeDXkadc0MaAdN6ANoCEdAofvUV8CxNnV9lChoBkdAmtpg3Lmp2mgHTegDaAhHQKH+eXWvr4Z1fZQoaAZHQJlSB65XlsBoB03oA2gIR0Ch/7xMvh60dX2UKGgGR0Cb4PXiiqQzaAdN6ANoCEdAogAGH+Idl3V9lChoBkdAm2mt0vGp/GgHTegDaAhHQKIE3Wvr4WV1fZQoaAZHQJi8juMMqjJoB03oA2gIR0CiB4oKc/dJdX2UKGgGR0CSIJPLxI8RaAdN6ANoCEdAogjTg0j1PHV9lChoBkdAlg2MIAwPAmgHTegDaAhHQKIJHybQTmJ1fZQoaAZHQJrPf9YOlO5oB03oA2gIR0CiDeNw71ZldX2UKGgGR0Cd1HzreIl/aAdN6ANoCEdAohCAk3S8anV9lChoBkdAmLRd+TeO42gHTegDaAhHQKIRvTPSlWR1fZQoaAZHQJwFjshPj4poB03oA2gIR0CiEgpDNQj2dX2UKGgGR0CaMmFLWZqmaAdN6ANoCEdAoha1ktmL+HV9lChoBkdAmZbaUiY9gWgHTegDaAhHQKIZWwDeTFF1fZQoaAZHQJsT2rQw9JVoB03oA2gIR0CiGqeWWyC4dX2UKGgGR0CbYssByS3caAdN6ANoCEdAohrzmOlwcnV9lChoBkdAm0pSCaqjrWgHTegDaAhHQKIfu/9pAUt1fZQoaAZHQJdRlHww0wdoB03oA2gIR0CiIk+/Yao/dX2UKGgGR0CWhgJ+DvmYaAdN6ANoCEdAoiORb4agmXV9lChoBkdAjJZBvaURnWgHTegDaAhHQKIj3K1XvH91fZQoaAZHQJmHNtBOYY1oB03oA2gIR0CiKKej/MnrdX2UKGgGR0COtm0dBBzFaAdN6ANoCEdAoitNrdnCf3V9lChoBkdAk4ZwPVd5ZGgHTegDaAhHQKIskA9V3ll1fZQoaAZHQJQb6ih37k5oB03oA2gIR0CiLNqtYB/7dX2UKGgGR0Cc3yebd8AraAdN6ANoCEdAojGc+/xlQXV9lChoBkdAelibgjyFwmgHTegDaAhHQKI0QILPUrl1fZQoaAZHQI3by97F85VoB03oA2gIR0CiNX1oHs1LdX2UKGgGR0CCdYTXarWAaAdN6ANoCEdAojXDU1AJLXV9lChoBkdAlyo22gFotmgHTegDaAhHQKI6hgZTAFh1fZQoaAZHQHSjQ7kn1FpoB03oA2gIR0CiPSy5Zr57dX2UKGgGR0CWwewrlNlAaAdN6ANoCEdAoj5ukFfReHV9lChoBkdAmBGmuHN5dGgHTegDaAhHQKI+u6xPfsN1fZQoaAZHQJlUX1RLsa9oB03oA2gIR0CiQ45aePJadX2UKGgGR0CbWbtSQ5mzaAdN6ANoCEdAokZCL0jC53V9lChoBkdAnIrXMQmNR2gHTegDaAhHQKJHjXvH93t1fZQoaAZHQJJ6EM2FWXFoB03oA2gIR0CiR9iyyD7JdX2UKGgGR0CcqsZTyauwaAdN6ANoCEdAoky3/WDpT3V9lChoBkdAnL9FjAi3X2gHTegDaAhHQKJPc4axX4l1fZQoaAZHQImLa4z7/GVoB03oA2gIR0CiULmhdt2tdX2UKGgGR0CYDkARkEs8aAdN6ANoCEdAolEDQXyiEnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.31 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.3", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:906a5868c0d70f8f7cf6d7022059e20fdeef2f8c8cea7ab316d500b984da7a45
3
+ size 1090441
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1703.1152341609122, "std_reward": 532.8415270143186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T20:36:05.332301"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b46e1d29aa1db4fc09eefcee39c79efd69194946ef1cd840a6253159a4cbfcc
3
+ size 2218