Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1703.12 +/- 532.84
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5baf6f01464ece769795e06d506991933a7be2531c9c306d233daff0bff6151
|
3 |
+
size 129298
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f66cdb893f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66cdb89480>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66cdb89510>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66cdb895a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f66cdb89630>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f66cdb896c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f66cdb89750>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66cdb897e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f66cdb89870>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66cdb89900>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66cdb89990>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66cdb89a20>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f66cdb86f00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674755997825377129,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3Njcm9uYmVyZy9taW5pY29uZGEzL2VudnMvaGYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9zY3JvbmJlcmcvbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAI69j48vhRAXNgIwEgJrT+hYZi/7ncUP7Usfb1pgKK/eGEfv/VRYkAnEuI/YcWpPmVgebxmuMG+ikMcP6H5iT9IOaK8dm8LvzPX3D5hhGk/AM8svz6hGjx/YVK/OhwDvEDKUT9d6+I+A3sXPxVWi7/Xc0FA0gHiP6fygMC4dZu/RXQlP798Vz1yvq3A5MKOP7+5E8B4q7S7ta9bv2YuCTwf79++z6/ZP7EYb8BhlJG+lWUmvwD93j/5yiQ/xXQZv0LLSEDn0HU/5ILVPjjF+j+7MZy/XeviPnhR2L8VVou/z4stPjthlj+O4MI+sDc0P7aijb+FBUo//iELP69JPr9VZc29/aJNvvp/mT9+Td09G7NGvxVo2796/6K+xgx6v7Icl71OQ56/h8k2P+E5HTyYxiy/LJAzPGmqVL+MPIe/QMpRP13r4j4Dexc/FVaLv8WChD+REcs/0JPGPLBViT9V/NO8Lazcvwbppz/e8mG//zkwP74QiL+9/gtA7KbuPiChl7+qooE/OAvPv5HiecA44Le/Odh7PxIpSD8LA1NArg68PS4HKUBPfEq/5xahPrsxnL9ZZxDAA3sXPxVWi7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOffw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdijOvQAAAABhrN2/AAAAAK3Ppz0AAAAA/hkAQAAAAAC8hac9AAAAAPGb6z8AAAAA9BllvQAAAAAuPdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvhfMtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLTuID0AAAAAgjbgvwAAAAAZrlG9AAAAAInj+D8AAAAAVHmdvQAAAAAtqOw/AAAAAHQGuz0AAAAA56TgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHINAbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBL2KW9AAAAAMYJAcAAAAAAfKngvQAAAACWdt8/AAAAAEURZjwAAAAAZ8LfPwAAAAAmW5Y9AAAAABt1/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8llGyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/ajpPQAAAADVjO6/AAAAAEcb8L0AAAAABbjiPwAAAAAK/gQ+AAAAADSr/T8AAAAAjyjTvQAAAAA+Ct6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ31Ip7TlT6MAWyUTegDjAF0lEdAoXFXxlQMyHV9lChoBkdAnaguqvNeMWgHTegDaAhHQKFz/ky1uzh1fZQoaAZHQJxcsMBp5/toB03oA2gIR0ChdUI+4b0fdX2UKGgGR0CfJDrI5o4/aAdN6ANoCEdAoXWJuyeI23V9lChoBkdAnKJSsbNr02gHTegDaAhHQKF6R0aIeo11fZQoaAZHQJ9NHZK3/gloB03oA2gIR0ChfPeFUQ05dX2UKGgGR0CaAv1jy4FzaAdN6ANoCEdAoX43zg/C7HV9lChoBkdAmW+3LzPKMmgHTegDaAhHQKF+gx5cC5p1fZQoaAZHQJ4SnxBmf5FoB03oA2gIR0Chgz0Mw1zidX2UKGgGR0CdSZQbdadMaAdN6ANoCEdAoYXl9Wp6yHV9lChoBkdAneMUiUxEfGgHTegDaAhHQKGHLv863iJ1fZQoaAZHQJ3Y9tALRa5oB03oA2gIR0Chh3koF3Y+dX2UKGgGR0CbkyEW69TQaAdN6ANoCEdAoYxA4ACGOHV9lChoBkdAnZYegYgq3GgHTegDaAhHQKGO3FfiPyV1fZQoaAZHQJuzb2f02+BoB03oA2gIR0ChkB1y/9HddX2UKGgGR0CdKCNJOFg2aAdN6ANoCEdAoZBn0TURWnV9lChoBkdAm8cUSVW0Z2gHTegDaAhHQKGVOxiXpnp1fZQoaAZHQJw88gkka/BoB03oA2gIR0Chl9V1GLDRdX2UKGgGR0CbxdsU7CBPaAdN6ANoCEdAoZkcDGLk0nV9lChoBkdAk+UjhDPWx2gHTegDaAhHQKGZat4A0bd1fZQoaAZHQJxWXP5YYBNoB03oA2gIR0ChnjmWD6FedX2UKGgGR0CchaRf4REnaAdN6ANoCEdAoaDP80k4WHV9lChoBkdAmem5MURFqmgHTegDaAhHQKGiDundfsx1fZQoaAZHQJjGcoiLVFxoB03oA2gIR0Cholk/KQq7dX2UKGgGR0Ca8tV+Zw4saAdN6ANoCEdAoacrPOY6XHV9lChoBkdAnRbCsS00FmgHTegDaAhHQKGp/5le4Td1fZQoaAZHQJzdhRtP559oB03oA2gIR0Chq5Q7DEWJdX2UKGgGR0CbFuX7+DODaAdN6ANoCEdAoavqd+Xqq3V9lChoBkdAm4HXoLXtjWgHTegDaAhHQKGwz5nlGPR1fZQoaAZHQJrggwudwvRoB03oA2gIR0Chs4nOB19wdX2UKGgGR0CZL0nnuAqeaAdN6ANoCEdAobTnVTaTOnV9lChoBkdAmtwML4N7SmgHTegDaAhHQKG1OSzPa+N1fZQoaAZHQJS1g/MW43FoB03oA2gIR0Chuo9LYf4idX2UKGgGR0CYuydI5HVgaAdN6ANoCEdAob1lGoaUA3V9lChoBkdAluYayfL9uWgHTegDaAhHQKG/KxoIv8J1fZQoaAZHQJT+P4cm0E5oB03oA2gIR0Chv4XLFGXpdX2UKGgGR0CV5wT2WY4RaAdN6ANoCEdAocSe1jRUm3V9lChoBkdAmpdITbnHN2gHTegDaAhHQKHHb/+85CF1fZQoaAZHQJewfu2JBPdoB03oA2gIR0ChyM5x7zCldX2UKGgGR0CYzUZ/CqIaaAdN6ANoCEdAockcdq+JxnV9lChoBkdAncFEXtShrWgHTegDaAhHQKHN7Du0CzV1fZQoaAZHQJmkGGdqcmVoB03oA2gIR0Ch0JvZIxxldX2UKGgGR0CZiJ89fTkRaAdN6ANoCEdAodHtMRHww3V9lChoBkdAmP9malUIcGgHTegDaAhHQKHSOE7nxKB1fZQoaAZHQJizXcSGrS5oB03oA2gIR0Ch1zHoX9BKdX2UKGgGR0CcPSm9xp+MaAdN6ANoCEdAodnbJ6po9XV9lChoBkdAm0SonrpqymgHTegDaAhHQKHbKQPqcEx1fZQoaAZHQJPcQDV6NVBoB03oA2gIR0Ch23McIZ62dX2UKGgGR0Cagm8Djin6aAdN6ANoCEdAoeA8mOU+tHV9lChoBkdAncL5JGvwE2gHTegDaAhHQKHi31V5rxl1fZQoaAZHQJs4jAO8TSNoB03oA2gIR0Ch5ChDG96DdX2UKGgGR0CdHA1PWQOnaAdN6ANoCEdAoeR1PtUn5XV9lChoBkdAmfjjBMzuW2gHTegDaAhHQKHpaAIY3vR1fZQoaAZHQJyxenl4keJoB03oA2gIR0Ch7DwyqMm4dX2UKGgGR0Cau+3Zf2K3aAdN6ANoCEdAoe2ZoduHe3V9lChoBkdAkpNIDTz/ZWgHTegDaAhHQKHt78Lront1fZQoaAZHQJjExEb5uZVoB03oA2gIR0Ch8r3Kji4sdX2UKGgGR0CYAPW8yvcKaAdN6ANoCEdAofVeR3eN1nV9lChoBkdAnK88AvL5h2gHTegDaAhHQKH2nhLGrCF1fZQoaAZHQJRMBpfx+a1oB03oA2gIR0Ch9uT0xubadX2UKGgGR0CeDXkadc0MaAdN6ANoCEdAofvUV8CxNnV9lChoBkdAmtpg3Lmp2mgHTegDaAhHQKH+eXWvr4Z1fZQoaAZHQJlSB65XlsBoB03oA2gIR0Ch/7xMvh60dX2UKGgGR0Cb4PXiiqQzaAdN6ANoCEdAogAGH+Idl3V9lChoBkdAm2mt0vGp/GgHTegDaAhHQKIE3Wvr4WV1fZQoaAZHQJi8juMMqjJoB03oA2gIR0CiB4oKc/dJdX2UKGgGR0CSIJPLxI8RaAdN6ANoCEdAogjTg0j1PHV9lChoBkdAlg2MIAwPAmgHTegDaAhHQKIJHybQTmJ1fZQoaAZHQJrPf9YOlO5oB03oA2gIR0CiDeNw71ZldX2UKGgGR0Cd1HzreIl/aAdN6ANoCEdAohCAk3S8anV9lChoBkdAmLRd+TeO42gHTegDaAhHQKIRvTPSlWR1fZQoaAZHQJwFjshPj4poB03oA2gIR0CiEgpDNQj2dX2UKGgGR0CaMmFLWZqmaAdN6ANoCEdAoha1ktmL+HV9lChoBkdAmZbaUiY9gWgHTegDaAhHQKIZWwDeTFF1fZQoaAZHQJsT2rQw9JVoB03oA2gIR0CiGqeWWyC4dX2UKGgGR0CbYssByS3caAdN6ANoCEdAohrzmOlwcnV9lChoBkdAm0pSCaqjrWgHTegDaAhHQKIfu/9pAUt1fZQoaAZHQJdRlHww0wdoB03oA2gIR0CiIk+/Yao/dX2UKGgGR0CWhgJ+DvmYaAdN6ANoCEdAoiORb4agmXV9lChoBkdAjJZBvaURnWgHTegDaAhHQKIj3K1XvH91fZQoaAZHQJmHNtBOYY1oB03oA2gIR0CiKKej/MnrdX2UKGgGR0COtm0dBBzFaAdN6ANoCEdAoitNrdnCf3V9lChoBkdAk4ZwPVd5ZGgHTegDaAhHQKIskA9V3ll1fZQoaAZHQJQb6ih37k5oB03oA2gIR0CiLNqtYB/7dX2UKGgGR0Cc3yebd8AraAdN6ANoCEdAojGc+/xlQXV9lChoBkdAelibgjyFwmgHTegDaAhHQKI0QILPUrl1fZQoaAZHQI3by97F85VoB03oA2gIR0CiNX1oHs1LdX2UKGgGR0CCdYTXarWAaAdN6ANoCEdAojXDU1AJLXV9lChoBkdAlyo22gFotmgHTegDaAhHQKI6hgZTAFh1fZQoaAZHQHSjQ7kn1FpoB03oA2gIR0CiPSy5Zr57dX2UKGgGR0CWwewrlNlAaAdN6ANoCEdAoj5ukFfReHV9lChoBkdAmBGmuHN5dGgHTegDaAhHQKI+u6xPfsN1fZQoaAZHQJlUX1RLsa9oB03oA2gIR0CiQ45aePJadX2UKGgGR0CbWbtSQ5mzaAdN6ANoCEdAokZCL0jC53V9lChoBkdAnIrXMQmNR2gHTegDaAhHQKJHjXvH93t1fZQoaAZHQJJ6EM2FWXFoB03oA2gIR0CiR9iyyD7JdX2UKGgGR0CcqsZTyauwaAdN6ANoCEdAoky3/WDpT3V9lChoBkdAnL9FjAi3X2gHTegDaAhHQKJPc4axX4l1fZQoaAZHQImLa4z7/GVoB03oA2gIR0CiULmhdt2tdX2UKGgGR0CYDkARkEs8aAdN6ANoCEdAolEDQXyiEnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f308dbe5726b1f553ea42e5fdd01fcb5ec9f8a3cea6ec02d02dd1918718cee79
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c1c4a35b239034163e102cefeaccabde8ed7109adcd92184a939086411e8a05
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.31 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.12.1
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66cdb893f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66cdb89480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66cdb89510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66cdb895a0>", "_build": "<function ActorCriticPolicy._build at 0x7f66cdb89630>", "forward": "<function ActorCriticPolicy.forward at 0x7f66cdb896c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f66cdb89750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66cdb897e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f66cdb89870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66cdb89900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66cdb89990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66cdb89a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f66cdb86f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674755997825377129, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3Njcm9uYmVyZy9taW5pY29uZGEzL2VudnMvaGYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9zY3JvbmJlcmcvbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAI69j48vhRAXNgIwEgJrT+hYZi/7ncUP7Usfb1pgKK/eGEfv/VRYkAnEuI/YcWpPmVgebxmuMG+ikMcP6H5iT9IOaK8dm8LvzPX3D5hhGk/AM8svz6hGjx/YVK/OhwDvEDKUT9d6+I+A3sXPxVWi7/Xc0FA0gHiP6fygMC4dZu/RXQlP798Vz1yvq3A5MKOP7+5E8B4q7S7ta9bv2YuCTwf79++z6/ZP7EYb8BhlJG+lWUmvwD93j/5yiQ/xXQZv0LLSEDn0HU/5ILVPjjF+j+7MZy/XeviPnhR2L8VVou/z4stPjthlj+O4MI+sDc0P7aijb+FBUo//iELP69JPr9VZc29/aJNvvp/mT9+Td09G7NGvxVo2796/6K+xgx6v7Icl71OQ56/h8k2P+E5HTyYxiy/LJAzPGmqVL+MPIe/QMpRP13r4j4Dexc/FVaLv8WChD+REcs/0JPGPLBViT9V/NO8Lazcvwbppz/e8mG//zkwP74QiL+9/gtA7KbuPiChl7+qooE/OAvPv5HiecA44Le/Odh7PxIpSD8LA1NArg68PS4HKUBPfEq/5xahPrsxnL9ZZxDAA3sXPxVWi7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOffw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdijOvQAAAABhrN2/AAAAAK3Ppz0AAAAA/hkAQAAAAAC8hac9AAAAAPGb6z8AAAAA9BllvQAAAAAuPdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvhfMtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLTuID0AAAAAgjbgvwAAAAAZrlG9AAAAAInj+D8AAAAAVHmdvQAAAAAtqOw/AAAAAHQGuz0AAAAA56TgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHINAbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBL2KW9AAAAAMYJAcAAAAAAfKngvQAAAACWdt8/AAAAAEURZjwAAAAAZ8LfPwAAAAAmW5Y9AAAAABt1/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8llGyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/ajpPQAAAADVjO6/AAAAAEcb8L0AAAAABbjiPwAAAAAK/gQ+AAAAADSr/T8AAAAAjyjTvQAAAAA+Ct6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ31Ip7TlT6MAWyUTegDjAF0lEdAoXFXxlQMyHV9lChoBkdAnaguqvNeMWgHTegDaAhHQKFz/ky1uzh1fZQoaAZHQJxcsMBp5/toB03oA2gIR0ChdUI+4b0fdX2UKGgGR0CfJDrI5o4/aAdN6ANoCEdAoXWJuyeI23V9lChoBkdAnKJSsbNr02gHTegDaAhHQKF6R0aIeo11fZQoaAZHQJ9NHZK3/gloB03oA2gIR0ChfPeFUQ05dX2UKGgGR0CaAv1jy4FzaAdN6ANoCEdAoX43zg/C7HV9lChoBkdAmW+3LzPKMmgHTegDaAhHQKF+gx5cC5p1fZQoaAZHQJ4SnxBmf5FoB03oA2gIR0Chgz0Mw1zidX2UKGgGR0CdSZQbdadMaAdN6ANoCEdAoYXl9Wp6yHV9lChoBkdAneMUiUxEfGgHTegDaAhHQKGHLv863iJ1fZQoaAZHQJ3Y9tALRa5oB03oA2gIR0Chh3koF3Y+dX2UKGgGR0CbkyEW69TQaAdN6ANoCEdAoYxA4ACGOHV9lChoBkdAnZYegYgq3GgHTegDaAhHQKGO3FfiPyV1fZQoaAZHQJuzb2f02+BoB03oA2gIR0ChkB1y/9HddX2UKGgGR0CdKCNJOFg2aAdN6ANoCEdAoZBn0TURWnV9lChoBkdAm8cUSVW0Z2gHTegDaAhHQKGVOxiXpnp1fZQoaAZHQJw88gkka/BoB03oA2gIR0Chl9V1GLDRdX2UKGgGR0CbxdsU7CBPaAdN6ANoCEdAoZkcDGLk0nV9lChoBkdAk+UjhDPWx2gHTegDaAhHQKGZat4A0bd1fZQoaAZHQJxWXP5YYBNoB03oA2gIR0ChnjmWD6FedX2UKGgGR0CchaRf4REnaAdN6ANoCEdAoaDP80k4WHV9lChoBkdAmem5MURFqmgHTegDaAhHQKGiDundfsx1fZQoaAZHQJjGcoiLVFxoB03oA2gIR0Cholk/KQq7dX2UKGgGR0Ca8tV+Zw4saAdN6ANoCEdAoacrPOY6XHV9lChoBkdAnRbCsS00FmgHTegDaAhHQKGp/5le4Td1fZQoaAZHQJzdhRtP559oB03oA2gIR0Chq5Q7DEWJdX2UKGgGR0CbFuX7+DODaAdN6ANoCEdAoavqd+Xqq3V9lChoBkdAm4HXoLXtjWgHTegDaAhHQKGwz5nlGPR1fZQoaAZHQJrggwudwvRoB03oA2gIR0Chs4nOB19wdX2UKGgGR0CZL0nnuAqeaAdN6ANoCEdAobTnVTaTOnV9lChoBkdAmtwML4N7SmgHTegDaAhHQKG1OSzPa+N1fZQoaAZHQJS1g/MW43FoB03oA2gIR0Chuo9LYf4idX2UKGgGR0CYuydI5HVgaAdN6ANoCEdAob1lGoaUA3V9lChoBkdAluYayfL9uWgHTegDaAhHQKG/KxoIv8J1fZQoaAZHQJT+P4cm0E5oB03oA2gIR0Chv4XLFGXpdX2UKGgGR0CV5wT2WY4RaAdN6ANoCEdAocSe1jRUm3V9lChoBkdAmpdITbnHN2gHTegDaAhHQKHHb/+85CF1fZQoaAZHQJewfu2JBPdoB03oA2gIR0ChyM5x7zCldX2UKGgGR0CYzUZ/CqIaaAdN6ANoCEdAockcdq+JxnV9lChoBkdAncFEXtShrWgHTegDaAhHQKHN7Du0CzV1fZQoaAZHQJmkGGdqcmVoB03oA2gIR0Ch0JvZIxxldX2UKGgGR0CZiJ89fTkRaAdN6ANoCEdAodHtMRHww3V9lChoBkdAmP9malUIcGgHTegDaAhHQKHSOE7nxKB1fZQoaAZHQJizXcSGrS5oB03oA2gIR0Ch1zHoX9BKdX2UKGgGR0CcPSm9xp+MaAdN6ANoCEdAodnbJ6po9XV9lChoBkdAm0SonrpqymgHTegDaAhHQKHbKQPqcEx1fZQoaAZHQJPcQDV6NVBoB03oA2gIR0Ch23McIZ62dX2UKGgGR0Cagm8Djin6aAdN6ANoCEdAoeA8mOU+tHV9lChoBkdAncL5JGvwE2gHTegDaAhHQKHi31V5rxl1fZQoaAZHQJs4jAO8TSNoB03oA2gIR0Ch5ChDG96DdX2UKGgGR0CdHA1PWQOnaAdN6ANoCEdAoeR1PtUn5XV9lChoBkdAmfjjBMzuW2gHTegDaAhHQKHpaAIY3vR1fZQoaAZHQJyxenl4keJoB03oA2gIR0Ch7DwyqMm4dX2UKGgGR0Cau+3Zf2K3aAdN6ANoCEdAoe2ZoduHe3V9lChoBkdAkpNIDTz/ZWgHTegDaAhHQKHt78Lront1fZQoaAZHQJjExEb5uZVoB03oA2gIR0Ch8r3Kji4sdX2UKGgGR0CYAPW8yvcKaAdN6ANoCEdAofVeR3eN1nV9lChoBkdAnK88AvL5h2gHTegDaAhHQKH2nhLGrCF1fZQoaAZHQJRMBpfx+a1oB03oA2gIR0Ch9uT0xubadX2UKGgGR0CeDXkadc0MaAdN6ANoCEdAofvUV8CxNnV9lChoBkdAmtpg3Lmp2mgHTegDaAhHQKH+eXWvr4Z1fZQoaAZHQJlSB65XlsBoB03oA2gIR0Ch/7xMvh60dX2UKGgGR0Cb4PXiiqQzaAdN6ANoCEdAogAGH+Idl3V9lChoBkdAm2mt0vGp/GgHTegDaAhHQKIE3Wvr4WV1fZQoaAZHQJi8juMMqjJoB03oA2gIR0CiB4oKc/dJdX2UKGgGR0CSIJPLxI8RaAdN6ANoCEdAogjTg0j1PHV9lChoBkdAlg2MIAwPAmgHTegDaAhHQKIJHybQTmJ1fZQoaAZHQJrPf9YOlO5oB03oA2gIR0CiDeNw71ZldX2UKGgGR0Cd1HzreIl/aAdN6ANoCEdAohCAk3S8anV9lChoBkdAmLRd+TeO42gHTegDaAhHQKIRvTPSlWR1fZQoaAZHQJwFjshPj4poB03oA2gIR0CiEgpDNQj2dX2UKGgGR0CaMmFLWZqmaAdN6ANoCEdAoha1ktmL+HV9lChoBkdAmZbaUiY9gWgHTegDaAhHQKIZWwDeTFF1fZQoaAZHQJsT2rQw9JVoB03oA2gIR0CiGqeWWyC4dX2UKGgGR0CbYssByS3caAdN6ANoCEdAohrzmOlwcnV9lChoBkdAm0pSCaqjrWgHTegDaAhHQKIfu/9pAUt1fZQoaAZHQJdRlHww0wdoB03oA2gIR0CiIk+/Yao/dX2UKGgGR0CWhgJ+DvmYaAdN6ANoCEdAoiORb4agmXV9lChoBkdAjJZBvaURnWgHTegDaAhHQKIj3K1XvH91fZQoaAZHQJmHNtBOYY1oB03oA2gIR0CiKKej/MnrdX2UKGgGR0COtm0dBBzFaAdN6ANoCEdAoitNrdnCf3V9lChoBkdAk4ZwPVd5ZGgHTegDaAhHQKIskA9V3ll1fZQoaAZHQJQb6ih37k5oB03oA2gIR0CiLNqtYB/7dX2UKGgGR0Cc3yebd8AraAdN6ANoCEdAojGc+/xlQXV9lChoBkdAelibgjyFwmgHTegDaAhHQKI0QILPUrl1fZQoaAZHQI3by97F85VoB03oA2gIR0CiNX1oHs1LdX2UKGgGR0CCdYTXarWAaAdN6ANoCEdAojXDU1AJLXV9lChoBkdAlyo22gFotmgHTegDaAhHQKI6hgZTAFh1fZQoaAZHQHSjQ7kn1FpoB03oA2gIR0CiPSy5Zr57dX2UKGgGR0CWwewrlNlAaAdN6ANoCEdAoj5ukFfReHV9lChoBkdAmBGmuHN5dGgHTegDaAhHQKI+u6xPfsN1fZQoaAZHQJlUX1RLsa9oB03oA2gIR0CiQ45aePJadX2UKGgGR0CbWbtSQ5mzaAdN6ANoCEdAokZCL0jC53V9lChoBkdAnIrXMQmNR2gHTegDaAhHQKJHjXvH93t1fZQoaAZHQJJ6EM2FWXFoB03oA2gIR0CiR9iyyD7JdX2UKGgGR0CcqsZTyauwaAdN6ANoCEdAoky3/WDpT3V9lChoBkdAnL9FjAi3X2gHTegDaAhHQKJPc4axX4l1fZQoaAZHQImLa4z7/GVoB03oA2gIR0CiULmhdt2tdX2UKGgGR0CYDkARkEs8aAdN6ANoCEdAolEDQXyiEnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.31 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:906a5868c0d70f8f7cf6d7022059e20fdeef2f8c8cea7ab316d500b984da7a45
|
3 |
+
size 1090441
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1703.1152341609122, "std_reward": 532.8415270143186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T20:36:05.332301"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b46e1d29aa1db4fc09eefcee39c79efd69194946ef1cd840a6253159a4cbfcc
|
3 |
+
size 2218
|