File size: 2,198 Bytes
5483fb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-small-unidic-bpe2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-small-unidic-bpe2
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5665
- Accuracy: 0.6690
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 768
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 14
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 2.111 | 1.0 | 69473 | 1.9831 | 0.6056 |
| 1.9667 | 2.0 | 138946 | 1.8334 | 0.6277 |
| 1.8918 | 3.0 | 208419 | 1.7656 | 0.6376 |
| 1.8518 | 4.0 | 277892 | 1.7219 | 0.6444 |
| 1.8202 | 5.0 | 347365 | 1.6904 | 0.6490 |
| 1.7996 | 6.0 | 416838 | 1.6705 | 0.6524 |
| 1.7767 | 7.0 | 486311 | 1.6479 | 0.6558 |
| 1.7663 | 8.0 | 555784 | 1.6339 | 0.6577 |
| 1.7524 | 9.0 | 625257 | 1.6159 | 0.6611 |
| 1.7398 | 10.0 | 694730 | 1.6020 | 0.6627 |
| 1.7229 | 11.0 | 764203 | 1.5920 | 0.6645 |
| 1.7127 | 12.0 | 833676 | 1.5836 | 0.6658 |
| 1.7011 | 13.0 | 903149 | 1.5737 | 0.6677 |
| 1.7 | 14.0 | 972622 | 1.5665 | 0.6690 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|