|
""" |
|
Adapted from ByteDance's SALMONN (https://github.com/bytedance/SALMONN). |
|
Please follow the original copyright of the SALMONN project. |
|
""" |
|
|
|
|
|
import torch |
|
from torch import Tensor, device, dtype, nn |
|
import torch.nn.functional as F |
|
import random |
|
import numpy as np |
|
from peft import LoraConfig, TaskType, get_peft_model |
|
from transformers import ( |
|
WhisperFeatureExtractor, |
|
WhisperModel, |
|
PreTrainedModel, |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
TextIteratorStreamer |
|
) |
|
from .configuration_typhoonaudio import TyphoonAudioConfig |
|
|
|
|
|
import math |
|
import os |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Dict, Any, Union |
|
import torch.utils.checkpoint |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.activations import ACT2FN |
|
from transformers.file_utils import ( |
|
ModelOutput, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
NextSentencePredictorOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import ( |
|
PreTrainedModel, |
|
apply_chunking_to_forward, |
|
find_pruneable_heads_and_indices, |
|
prune_linear_layer, |
|
) |
|
from transformers.models.bert.configuration_bert import BertConfig |
|
|
|
|
|
from torch.nn import LayerNorm, Parameter |
|
import torch.distributed as distributed |
|
import torchaudio.compliance.kaldi as ta_kaldi |
|
import logging |
|
try: |
|
from einops import rearrange, repeat |
|
except ImportError: |
|
pass |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
class TyphoonAudio(PreTrainedModel): |
|
config_class = TyphoonAudioConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
if config.dtype == "float16": |
|
self.torch_dtype = torch.float16 |
|
elif config.dtype == "bfloat16": |
|
self.torch_dtype = torch.bfloat16 |
|
elif config.dtype == "float32": |
|
self.torch_dtype = torch.float32 |
|
else: |
|
raise ValueError("dtype not supported") |
|
|
|
|
|
self.feature_extractor = WhisperFeatureExtractor.from_pretrained(config.whisper_path) |
|
|
|
|
|
self.speech_encoder = WhisperModel.from_pretrained( |
|
config.whisper_path, |
|
torch_dtype=self.torch_dtype |
|
).encoder |
|
self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model, dtype=self.torch_dtype) |
|
|
|
|
|
beats_cfg = BEATsConfig() |
|
beats = BEATs(beats_cfg) |
|
self.beats = beats |
|
self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim, dtype=self.torch_dtype) |
|
for name, param in self.beats.named_parameters(): |
|
param.requires_grad = False |
|
self.beats.eval() |
|
self.beats.to(self.torch_dtype) |
|
|
|
|
|
self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer( |
|
config.speech_qformer_token_num, |
|
self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim, |
|
config.speech_qformer_layer, |
|
torch_dtype=self.torch_dtype |
|
) |
|
self.second_per_frame = config.second_per_frame |
|
self.second_stride = config.second_stride |
|
|
|
|
|
self.llama_model = AutoModelForCausalLM.from_pretrained( |
|
config.llm_path, |
|
torch_dtype=self.torch_dtype, |
|
) |
|
|
|
|
|
self.lora = config.lora |
|
if self.lora: |
|
|
|
self.peft_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, |
|
inference_mode=True, |
|
r=config.lora_rank, |
|
lora_alpha=config.lora_alpha, |
|
lora_dropout=config.lora_dropout, |
|
|
|
) |
|
self.llama_model = get_peft_model(self.llama_model, self.peft_config) |
|
|
|
|
|
self.llama_tokenizer = AutoTokenizer.from_pretrained(config.llm_path, use_fast=False) |
|
self.llama_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
self.llama_tokenizer.padding_side = "right" |
|
|
|
|
|
self.speech_llama_proj = nn.Linear( |
|
self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size, |
|
dtype=self.torch_dtype |
|
) |
|
|
|
def load_beats(self, beats_path): |
|
beats_checkpoint = torch.load(beats_path, map_location='cpu') |
|
self.beats.load_state_dict(beats_checkpoint['model']) |
|
|
|
def load_adapter(self, ckpt_path): |
|
ckpt_dict = torch.load(ckpt_path)['model'] |
|
self.load_state_dict(ckpt_dict, strict=False) |
|
|
|
def forward(self, **kwargs): |
|
raise Exception("Direct forward pass is not supported. For training, please refer to the training recipe of Typhoon-Audio.") |
|
|
|
def generate( |
|
self, |
|
audio, |
|
prompt, |
|
prompt_pattern, |
|
max_new_tokens=1024, |
|
num_beams=4, |
|
do_sample=True, |
|
top_p=0.9, |
|
repetition_penalty=1.0, |
|
length_penalty=1.0, |
|
temperature=1.0, |
|
streamer=None |
|
): |
|
device = self.llama_model.device |
|
|
|
|
|
spectrogram = self.feature_extractor(audio, return_tensors="pt", sampling_rate=16000).input_features.to(device).to(self.torch_dtype) |
|
speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state |
|
|
|
|
|
raw_wav = torch.from_numpy(audio).to(device).unsqueeze(0) |
|
audio_padding_mask = torch.zeros(raw_wav.shape, device=device).bool() |
|
audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True, torch_dtype=self.torch_dtype) |
|
|
|
|
|
speech_embeds = self.ln_speech(speech_embeds) |
|
audio_embeds = self.ln_audio(audio_embeds) |
|
audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1))) |
|
speech_embeds = torch.cat([speech_embeds, audio_embeds], dim=-1) |
|
|
|
|
|
B, T, C = speech_embeds.shape |
|
kernel = round(T * self.second_per_frame / 30.0) |
|
stride = round(T * self.second_stride / 30.0) |
|
kernel = (1, kernel) |
|
stride = (1, stride) |
|
speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2) |
|
speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride) |
|
_, _, L = speech_embeds_overlap.shape |
|
speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L) |
|
speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1]) |
|
speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C) |
|
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device) |
|
|
|
|
|
query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1) |
|
query_output = self.speech_Qformer.bert( |
|
query_embeds=query_tokens, |
|
encoder_hidden_states=speech_embeds, |
|
encoder_attention_mask=speech_atts, |
|
return_dict=True, |
|
) |
|
speech_embeds = self.speech_llama_proj(query_output.last_hidden_state) |
|
speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous() |
|
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long).to(speech_embeds.device) |
|
|
|
|
|
embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens |
|
prompt_left, prompts_right = prompt_pattern.format(prompt).split('<SpeechHere>') |
|
prompt_left_ids = self.llama_tokenizer( |
|
prompt_left, |
|
return_tensors="pt", |
|
add_special_tokens=False |
|
).to(speech_embeds.device).input_ids |
|
prompt_left_embeds = embed_tokens(prompt_left_ids) |
|
prompt_right_ids = self.llama_tokenizer( |
|
prompts_right, |
|
return_tensors="pt", |
|
add_special_tokens=False |
|
).to(speech_embeds.device).input_ids |
|
prompt_right_embeds = embed_tokens(prompt_right_ids) |
|
|
|
bos_embeds = self.llama_model.model.embed_tokens( |
|
torch.ones( |
|
[1, 1], |
|
dtype=torch.long, |
|
device=device, |
|
) * self.llama_tokenizer.bos_token_id |
|
) if not self.lora else self.llama_model.model.model.embed_tokens( |
|
torch.ones( |
|
[1, 1], |
|
dtype=torch.long, |
|
device=device, |
|
) * self.llama_tokenizer.bos_token_id |
|
) |
|
|
|
embeds = torch.cat([bos_embeds, prompt_left_embeds, speech_embeds, prompt_right_embeds], dim=1) |
|
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device) |
|
|
|
|
|
output = self.llama_model.generate( |
|
inputs_embeds=embeds, |
|
max_new_tokens=max_new_tokens, |
|
num_beams=num_beams, |
|
do_sample=do_sample, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
length_penalty=length_penalty, |
|
temperature=temperature, |
|
attention_mask=atts, |
|
bos_token_id=self.llama_tokenizer.bos_token_id, |
|
eos_token_id=self.llama_tokenizer.eos_token_id, |
|
pad_token_id=self.llama_tokenizer.pad_token_id, |
|
streamer=streamer, |
|
) |
|
output_text = self.llama_tokenizer.batch_decode(output, add_special_tokens=False, skip_special_tokens=True) |
|
return output_text[0] |
|
|
|
def generate_stream( |
|
self, |
|
audio, |
|
prompt, |
|
prompt_pattern="<|start_header_id|>user<|end_header_id|>\n\n<Speech><SpeechHere></Speech> {}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=0.9, |
|
repetition_penalty=1.0, |
|
length_penalty=1.0, |
|
temperature=1.0, |
|
): |
|
streamer = TextIteratorStreamer(self.llama_tokenizer) |
|
_ = self.generate( |
|
audio=audio, |
|
prompt=prompt, |
|
prompt_pattern=prompt_pattern, |
|
do_sample=do_sample, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
length_penalty=length_penalty, |
|
streamer=streamer, |
|
num_beams=1, |
|
) |
|
response = "" |
|
for new_tokens in streamer: |
|
response += new_tokens.replace("<|eot_id|>", "").replace("<|end_of_text|>", "") |
|
yield response |
|
return response |
|
|
|
def init_speech_Qformer(self, num_query_token, speech_width, num_hidden_layers=2, torch_dtype="float16"): |
|
encoder_config = BertConfig() |
|
encoder_config.num_hidden_layers = num_hidden_layers |
|
encoder_config.encoder_width = speech_width |
|
encoder_config.add_cross_attention = True |
|
encoder_config.cross_attention_freq = 1 |
|
encoder_config.query_length = num_query_token |
|
Qformer = BertLMHeadModel(config=encoder_config) |
|
Qformer.to(torch_dtype) |
|
query_tokens = nn.Parameter( |
|
torch.zeros(1, num_query_token, encoder_config.hidden_size, dtype=torch_dtype), |
|
) |
|
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) |
|
return Qformer, query_tokens |
|
|
|
class BertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word and position embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id |
|
) |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size |
|
) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) |
|
) |
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
|
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
position_ids=None, |
|
query_embeds=None, |
|
past_key_values_length=0, |
|
): |
|
if input_ids is not None: |
|
seq_length = input_ids.size()[1] |
|
else: |
|
seq_length = 0 |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[ |
|
:, past_key_values_length : seq_length + past_key_values_length |
|
].clone() |
|
|
|
if input_ids is not None: |
|
embeddings = self.word_embeddings(input_ids) |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = embeddings + position_embeddings |
|
|
|
if query_embeds is not None: |
|
embeddings = torch.cat((query_embeds, embeddings), dim=1) |
|
else: |
|
embeddings = query_embeds |
|
|
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config, is_cross_attention): |
|
super().__init__() |
|
self.config = config |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr( |
|
config, "embedding_size" |
|
): |
|
raise ValueError( |
|
"The hidden size (%d) is not a multiple of the number of attention " |
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads) |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
if is_cross_attention: |
|
self.key = nn.Linear(config.encoder_width, self.all_head_size) |
|
self.value = nn.Linear(config.encoder_width, self.all_head_size) |
|
else: |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding( |
|
2 * config.max_position_embeddings - 1, self.attention_head_size |
|
) |
|
self.save_attention = False |
|
|
|
def save_attn_gradients(self, attn_gradients): |
|
self.attn_gradients = attn_gradients |
|
|
|
def get_attn_gradients(self): |
|
return self.attn_gradients |
|
|
|
def save_attention_map(self, attention_map): |
|
self.attention_map = attention_map |
|
|
|
def get_attention_map(self): |
|
return self.attention_map |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + ( |
|
self.num_attention_heads, |
|
self.attention_head_size, |
|
) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(-1, 1) |
|
position_ids_r = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding( |
|
distance + self.max_position_embeddings - 1 |
|
) |
|
positional_embedding = positional_embedding.to( |
|
dtype=query_layer.dtype |
|
) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
relative_position_scores_key = torch.einsum( |
|
"bhrd,lrd->bhlr", key_layer, positional_embedding |
|
) |
|
attention_scores = ( |
|
attention_scores |
|
+ relative_position_scores_query |
|
+ relative_position_scores_key |
|
) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
if is_cross_attention and self.save_attention: |
|
self.save_attention_map(attention_probs) |
|
attention_probs.register_hook(self.save_attn_gradients) |
|
|
|
|
|
|
|
attention_probs_dropped = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs_dropped = attention_probs_dropped * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs_dropped, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = ( |
|
(context_layer, attention_probs) if output_attentions else (context_layer,) |
|
) |
|
|
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config, is_cross_attention=False): |
|
super().__init__() |
|
self.self = BertSelfAttention(config, is_cross_attention) |
|
self.output = BertSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, |
|
self.self.num_attention_heads, |
|
self.self.attention_head_size, |
|
self.pruned_heads, |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = ( |
|
self.self.attention_head_size * self.self.num_attention_heads |
|
) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[ |
|
1: |
|
] |
|
return outputs |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertLayer(nn.Module): |
|
def __init__(self, config, layer_num): |
|
super().__init__() |
|
self.config = config |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = BertAttention(config) |
|
self.layer_num = layer_num |
|
if ( |
|
self.config.add_cross_attention |
|
and layer_num % self.config.cross_attention_freq == 0 |
|
): |
|
self.crossattention = BertAttention( |
|
config, is_cross_attention=self.config.add_cross_attention |
|
) |
|
self.has_cross_attention = True |
|
else: |
|
self.has_cross_attention = False |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
self.intermediate_query = BertIntermediate(config) |
|
self.output_query = BertOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
query_length=0, |
|
): |
|
|
|
self_attn_past_key_value = ( |
|
past_key_value[:2] if past_key_value is not None else None |
|
) |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:-1] |
|
|
|
present_key_value = self_attention_outputs[-1] |
|
|
|
if query_length > 0: |
|
query_attention_output = attention_output[:, :query_length, :] |
|
|
|
if self.has_cross_attention: |
|
assert ( |
|
encoder_hidden_states is not None |
|
), "encoder_hidden_states must be given for cross-attention layers" |
|
cross_attention_outputs = self.crossattention( |
|
query_attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
query_attention_output = cross_attention_outputs[0] |
|
outputs = ( |
|
outputs + cross_attention_outputs[1:-1] |
|
) |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk_query, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
query_attention_output, |
|
) |
|
if attention_output.shape[1] > query_length: |
|
layer_output_text = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output[:, query_length:, :], |
|
) |
|
layer_output = torch.cat([layer_output, layer_output_text], dim=1) |
|
else: |
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output, |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
def feed_forward_chunk_query(self, attention_output): |
|
intermediate_output = self.intermediate_query(attention_output) |
|
layer_output = self.output_query(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class BertEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[BertLayer(config, i) for i in range(config.num_hidden_layers)] |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
query_length=0, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = ( |
|
() if output_attentions and self.config.add_cross_attention else None |
|
) |
|
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
for i in range(self.config.num_hidden_layers): |
|
layer_module = self.layer[i] |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if getattr(self.config, "gradient_checkpointing", False) and self.training: |
|
|
|
if use_cache: |
|
logger.warn( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module( |
|
*inputs, past_key_value, output_attentions, query_length |
|
) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
query_length, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class BertPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
|
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOnlyMLMHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
class BertPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BertConfig |
|
base_model_prefix = "bert" |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
class BertModel(BertPreTrainedModel): |
|
""" |
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in `Attention is |
|
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, |
|
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an |
|
input to the forward pass. |
|
""" |
|
|
|
def __init__(self, config, add_pooling_layer=False): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = BertEmbeddings(config) |
|
|
|
self.encoder = BertEncoder(config) |
|
|
|
self.pooler = BertPooler(config) if add_pooling_layer else None |
|
|
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def get_extended_attention_mask( |
|
self, |
|
attention_mask: Tensor, |
|
input_shape: Tuple[int], |
|
device: device, |
|
is_decoder: bool, |
|
has_query: bool = False, |
|
) -> Tensor: |
|
""" |
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. |
|
|
|
Arguments: |
|
attention_mask (:obj:`torch.Tensor`): |
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. |
|
input_shape (:obj:`Tuple[int]`): |
|
The shape of the input to the model. |
|
device: (:obj:`torch.device`): |
|
The device of the input to the model. |
|
|
|
Returns: |
|
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. |
|
""" |
|
|
|
|
|
if attention_mask.dim() == 3: |
|
extended_attention_mask = attention_mask[:, None, :, :] |
|
elif attention_mask.dim() == 2: |
|
|
|
|
|
|
|
if is_decoder: |
|
batch_size, seq_length = input_shape |
|
|
|
seq_ids = torch.arange(seq_length, device=device) |
|
causal_mask = ( |
|
seq_ids[None, None, :].repeat(batch_size, seq_length, 1) |
|
<= seq_ids[None, :, None] |
|
) |
|
|
|
|
|
|
|
causal_mask = causal_mask.to(attention_mask.dtype) |
|
|
|
if causal_mask.shape[1] < attention_mask.shape[1]: |
|
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] |
|
if has_query: |
|
causal_mask = torch.cat( |
|
[ |
|
torch.zeros( |
|
(batch_size, prefix_seq_len, seq_length), |
|
device=device, |
|
dtype=causal_mask.dtype, |
|
), |
|
causal_mask, |
|
], |
|
axis=1, |
|
) |
|
causal_mask = torch.cat( |
|
[ |
|
torch.ones( |
|
(batch_size, causal_mask.shape[1], prefix_seq_len), |
|
device=device, |
|
dtype=causal_mask.dtype, |
|
), |
|
causal_mask, |
|
], |
|
axis=-1, |
|
) |
|
extended_attention_mask = ( |
|
causal_mask[:, None, :, :] * attention_mask[:, None, None, :] |
|
) |
|
else: |
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
else: |
|
raise ValueError( |
|
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( |
|
input_shape, attention_mask.shape |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to( |
|
dtype=self.dtype |
|
) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
return extended_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
query_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
is_decoder=False, |
|
): |
|
r""" |
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` |
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` |
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. |
|
use_cache (:obj:`bool`, `optional`): |
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|
decoding (see :obj:`past_key_values`). |
|
""" |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
|
|
if input_ids is None: |
|
assert ( |
|
query_embeds is not None |
|
), "You have to specify query_embeds when input_ids is None" |
|
|
|
|
|
past_key_values_length = ( |
|
past_key_values[0][0].shape[2] - self.config.query_length |
|
if past_key_values is not None |
|
else 0 |
|
) |
|
|
|
query_length = query_embeds.shape[1] if query_embeds is not None else 0 |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
query_embeds=query_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
input_shape = embedding_output.size()[:-1] |
|
batch_size, seq_length = input_shape |
|
device = embedding_output.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
((batch_size, seq_length + past_key_values_length)), device=device |
|
) |
|
|
|
|
|
|
|
if is_decoder: |
|
extended_attention_mask = self.get_extended_attention_mask( |
|
attention_mask, |
|
input_ids.shape, |
|
device, |
|
is_decoder, |
|
has_query=(query_embeds is not None), |
|
) |
|
else: |
|
extended_attention_mask = self.get_extended_attention_mask( |
|
attention_mask, input_shape, device, is_decoder |
|
) |
|
|
|
|
|
|
|
if encoder_hidden_states is not None: |
|
if type(encoder_hidden_states) == list: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[ |
|
0 |
|
].size() |
|
else: |
|
( |
|
encoder_batch_size, |
|
encoder_sequence_length, |
|
_, |
|
) = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
|
|
if type(encoder_attention_mask) == list: |
|
encoder_extended_attention_mask = [ |
|
self.invert_attention_mask(mask) for mask in encoder_attention_mask |
|
] |
|
elif encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask |
|
) |
|
else: |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask |
|
) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
query_length=query_length, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = ( |
|
self.pooler(sequence_output) if self.pooler is not None else None |
|
) |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
class BertLMHeadModel(BertPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.cls = BertOnlyMLMHead(config) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
query_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
past_key_values=None, |
|
use_cache=True, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
return_logits=False, |
|
is_decoder=True, |
|
reduction="mean", |
|
): |
|
r""" |
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are |
|
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` |
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` |
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` |
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. |
|
use_cache (:obj:`bool`, `optional`): |
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|
decoding (see :obj:`past_key_values`). |
|
Returns: |
|
Example:: |
|
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig |
|
>>> import torch |
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') |
|
>>> config = BertConfig.from_pretrained("bert-base-cased") |
|
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) |
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> prediction_logits = outputs.logits |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
if labels is not None: |
|
use_cache = False |
|
if past_key_values is not None: |
|
query_embeds = None |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
query_embeds=query_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
is_decoder=is_decoder, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
if query_embeds is not None: |
|
sequence_output = outputs[0][:, query_embeds.shape[1] :, :] |
|
|
|
prediction_scores = self.cls(sequence_output) |
|
|
|
if return_logits: |
|
return prediction_scores[:, :-1, :].contiguous() |
|
|
|
lm_loss = None |
|
if labels is not None: |
|
|
|
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) |
|
lm_loss = loss_fct( |
|
shifted_prediction_scores.view(-1, self.config.vocab_size), |
|
labels.view(-1), |
|
) |
|
if reduction == "none": |
|
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=lm_loss, |
|
logits=prediction_scores, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs |
|
): |
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_ids.shape) |
|
query_mask = input_ids.new_ones(query_embeds.shape[:-1]) |
|
attention_mask = torch.cat([query_mask, attention_mask], dim=-1) |
|
|
|
|
|
if past is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"query_embeds": query_embeds, |
|
"attention_mask": attention_mask, |
|
"past_key_values": past, |
|
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), |
|
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), |
|
"is_decoder": True, |
|
} |
|
|
|
def _reorder_cache(self, past, beam_idx): |
|
reordered_past = () |
|
for layer_past in past: |
|
reordered_past += ( |
|
tuple( |
|
past_state.index_select(0, beam_idx) for past_state in layer_past |
|
), |
|
) |
|
return reordered_past |
|
|
|
|
|
class BertForMaskedLM(BertPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.cls = BertOnlyMLMHead(config) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
query_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
return_logits=False, |
|
is_decoder=False, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., |
|
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored |
|
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` |
|
""" |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
query_embeds=query_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
is_decoder=is_decoder, |
|
) |
|
|
|
if query_embeds is not None: |
|
sequence_output = outputs[0][:, query_embeds.shape[1] :, :] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
if return_logits: |
|
return prediction_scores |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ( |
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
) |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class BEATsConfig: |
|
def __init__(self, cfg=None): |
|
|
|
self.input_patch_size: int = 16 |
|
self.embed_dim: int = 512 |
|
self.conv_bias: bool = False |
|
|
|
self.encoder_layers: int = 12 |
|
self.encoder_embed_dim: int = 768 |
|
self.encoder_ffn_embed_dim: int = 3072 |
|
self.encoder_attention_heads: int = 12 |
|
self.activation_fn: str = "gelu" |
|
|
|
self.layer_wise_gradient_decay_ratio: float = 0.6 |
|
self.layer_norm_first: bool = False |
|
self.deep_norm: bool = True |
|
|
|
|
|
self.dropout: float = 0.0 |
|
self.attention_dropout: float = 0.0 |
|
self.activation_dropout: float = 0.0 |
|
self.encoder_layerdrop: float = 0.05 |
|
self.dropout_input: float = 0.0 |
|
|
|
|
|
self.conv_pos: int = 128 |
|
self.conv_pos_groups: int = 16 |
|
|
|
|
|
self.relative_position_embedding: bool = True |
|
self.num_buckets: int = 320 |
|
self.max_distance: int = 800 |
|
self.gru_rel_pos: bool = True |
|
|
|
|
|
self.finetuned_model: bool = True |
|
self.predictor_dropout: float = 0.0 |
|
self.predictor_class: int = 527 |
|
|
|
if cfg is not None: |
|
self.update(cfg) |
|
|
|
def update(self, cfg: dict): |
|
self.__dict__.update(cfg) |
|
|
|
|
|
class BEATs(nn.Module): |
|
def __init__( |
|
self, |
|
cfg: BEATsConfig, |
|
) -> None: |
|
super().__init__() |
|
logger.info(f"BEATs Config: {cfg.__dict__}") |
|
|
|
self.cfg = cfg |
|
|
|
self.embed = cfg.embed_dim |
|
self.post_extract_proj = ( |
|
nn.Linear(self.embed, cfg.encoder_embed_dim) |
|
if self.embed != cfg.encoder_embed_dim |
|
else None |
|
) |
|
|
|
self.input_patch_size = cfg.input_patch_size |
|
self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size, |
|
bias=cfg.conv_bias) |
|
|
|
self.dropout_input = nn.Dropout(cfg.dropout_input) |
|
|
|
assert not cfg.deep_norm or not cfg.layer_norm_first |
|
self.encoder = TransformerEncoder(cfg) |
|
self.layer_norm = LayerNorm(self.embed) |
|
|
|
if cfg.finetuned_model: |
|
self.predictor_dropout = nn.Dropout(cfg.predictor_dropout) |
|
self.predictor = nn.Linear(cfg.encoder_embed_dim, cfg.predictor_class) |
|
else: |
|
self.predictor = None |
|
|
|
def forward_padding_mask( |
|
self, |
|
features: torch.Tensor, |
|
padding_mask: torch.Tensor, |
|
) -> torch.Tensor: |
|
extra = padding_mask.size(1) % features.size(1) |
|
if extra > 0: |
|
padding_mask = padding_mask[:, :-extra] |
|
padding_mask = padding_mask.view( |
|
padding_mask.size(0), features.size(1), -1 |
|
) |
|
padding_mask = padding_mask.all(-1) |
|
return padding_mask |
|
|
|
def preprocess( |
|
self, |
|
source: torch.Tensor, |
|
fbank_mean: float = 15.41663, |
|
fbank_std: float = 6.55582, |
|
) -> torch.Tensor: |
|
fbanks = [] |
|
for waveform in source: |
|
waveform = waveform.unsqueeze(0) * 2 ** 15 |
|
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10) |
|
fbanks.append(fbank) |
|
fbank = torch.stack(fbanks, dim=0) |
|
fbank = (fbank - fbank_mean) / (2 * fbank_std) |
|
return fbank |
|
|
|
def extract_features( |
|
self, |
|
source: torch.Tensor, |
|
padding_mask: Optional[torch.Tensor] = None, |
|
fbank_mean: float = 15.41663, |
|
fbank_std: float = 6.55582, |
|
feature_only=False, |
|
torch_dtype=torch.float32 |
|
): |
|
fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std).to(torch_dtype) |
|
|
|
if padding_mask is not None: |
|
padding_mask = self.forward_padding_mask(fbank, padding_mask) |
|
|
|
fbank = fbank.unsqueeze(1) |
|
features = self.patch_embedding(fbank) |
|
features = features.reshape(features.shape[0], features.shape[1], -1) |
|
features = features.transpose(1, 2) |
|
features = self.layer_norm(features) |
|
|
|
if padding_mask is not None: |
|
padding_mask = self.forward_padding_mask(features, padding_mask) |
|
|
|
if self.post_extract_proj is not None: |
|
features = self.post_extract_proj(features) |
|
|
|
x = self.dropout_input(features) |
|
|
|
x, layer_results = self.encoder( |
|
x, |
|
padding_mask=padding_mask, |
|
) |
|
|
|
if not feature_only and self.predictor is not None: |
|
x = self.predictor_dropout(x) |
|
logits = self.predictor(x) |
|
|
|
if padding_mask is not None and padding_mask.any(): |
|
logits[padding_mask] = 0 |
|
logits = logits.sum(dim=1) |
|
logits = logits / (~padding_mask).sum(dim=1).unsqueeze(-1).expand_as(logits) |
|
else: |
|
logits = logits.mean(dim=1) |
|
|
|
lprobs = torch.sigmoid(logits) |
|
|
|
return lprobs, padding_mask |
|
else: |
|
return x, padding_mask |
|
|
|
class TransformerEncoder(nn.Module): |
|
def __init__(self, args): |
|
super().__init__() |
|
|
|
self.dropout = args.dropout |
|
self.embedding_dim = args.encoder_embed_dim |
|
|
|
self.pos_conv = nn.Conv1d( |
|
self.embedding_dim, |
|
self.embedding_dim, |
|
kernel_size=args.conv_pos, |
|
padding=args.conv_pos // 2, |
|
groups=args.conv_pos_groups, |
|
) |
|
dropout = 0 |
|
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) |
|
nn.init.normal_(self.pos_conv.weight, mean=0, std=std) |
|
nn.init.constant_(self.pos_conv.bias, 0) |
|
|
|
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) |
|
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) |
|
|
|
if hasattr(args, "relative_position_embedding"): |
|
self.relative_position_embedding = args.relative_position_embedding |
|
self.num_buckets = args.num_buckets |
|
self.max_distance = args.max_distance |
|
else: |
|
self.relative_position_embedding = False |
|
self.num_buckets = 0 |
|
self.max_distance = 0 |
|
|
|
self.layers = nn.ModuleList( |
|
[ |
|
TransformerSentenceEncoderLayer( |
|
embedding_dim=self.embedding_dim, |
|
ffn_embedding_dim=args.encoder_ffn_embed_dim, |
|
num_attention_heads=args.encoder_attention_heads, |
|
dropout=self.dropout, |
|
attention_dropout=args.attention_dropout, |
|
activation_dropout=args.activation_dropout, |
|
activation_fn=args.activation_fn, |
|
layer_norm_first=args.layer_norm_first, |
|
deep_norm=args.deep_norm, |
|
has_relative_attention_bias=self.relative_position_embedding, |
|
num_buckets=self.num_buckets, |
|
max_distance=self.max_distance, |
|
gru_rel_pos=args.gru_rel_pos, |
|
encoder_layers=args.encoder_layers, |
|
) |
|
for i in range(args.encoder_layers) |
|
] |
|
) |
|
if self.relative_position_embedding: |
|
for i in range(1, args.encoder_layers): |
|
del self.layers[i].self_attn.relative_attention_bias |
|
self.layers[i].self_attn.relative_attention_bias = self.layers[0].self_attn.relative_attention_bias |
|
|
|
self.layer_norm_first = args.layer_norm_first |
|
self.layer_norm = LayerNorm(self.embedding_dim) |
|
self.layerdrop = args.encoder_layerdrop |
|
|
|
self.apply(init_bert_params) |
|
|
|
if args.deep_norm: |
|
deep_norm_beta = math.pow(8 * args.encoder_layers, -1 / 4) |
|
for i in range(args.encoder_layers): |
|
nn.init.xavier_normal_(self.layers[i].self_attn.k_proj.weight, gain=1) |
|
nn.init.xavier_normal_(self.layers[i].self_attn.v_proj.weight, gain=deep_norm_beta) |
|
nn.init.xavier_normal_(self.layers[i].self_attn.q_proj.weight, gain=1) |
|
nn.init.xavier_normal_(self.layers[i].self_attn.out_proj.weight, gain=deep_norm_beta) |
|
nn.init.xavier_normal_(self.layers[i].fc1.weight, gain=deep_norm_beta) |
|
nn.init.xavier_normal_(self.layers[i].fc2.weight, gain=deep_norm_beta) |
|
|
|
self.layer_wise_gradient_decay_ratio = getattr(args, "layer_wise_gradient_decay_ratio", 1) |
|
|
|
def forward(self, x, padding_mask=None, layer=None): |
|
x, layer_results = self.extract_features(x, padding_mask, layer) |
|
|
|
if self.layer_norm_first and layer is None: |
|
x = self.layer_norm(x) |
|
|
|
return x, layer_results |
|
|
|
def extract_features(self, x, padding_mask=None, tgt_layer=None): |
|
|
|
if padding_mask is not None: |
|
x[padding_mask] = 0 |
|
|
|
x_conv = self.pos_conv(x.transpose(1, 2)) |
|
x_conv = x_conv.transpose(1, 2) |
|
x = x + x_conv |
|
|
|
if not self.layer_norm_first: |
|
x = self.layer_norm(x) |
|
|
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
layer_results = [] |
|
z = None |
|
if tgt_layer is not None: |
|
layer_results.append((x, z)) |
|
r = None |
|
pos_bias = None |
|
for i, layer in enumerate(self.layers): |
|
if self.layer_wise_gradient_decay_ratio != 1.0: |
|
x = GradMultiply.apply(x, self.layer_wise_gradient_decay_ratio) |
|
dropout_probability = np.random.random() |
|
if not self.training or (dropout_probability > self.layerdrop): |
|
x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_bias) |
|
if tgt_layer is not None: |
|
layer_results.append((x, z)) |
|
if i == tgt_layer: |
|
r = x |
|
break |
|
|
|
if r is not None: |
|
x = r |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
return x, layer_results |
|
|
|
class TransformerSentenceEncoderLayer(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: float = 768, |
|
ffn_embedding_dim: float = 3072, |
|
num_attention_heads: float = 8, |
|
dropout: float = 0.1, |
|
attention_dropout: float = 0.1, |
|
activation_dropout: float = 0.1, |
|
activation_fn: str = "relu", |
|
layer_norm_first: bool = False, |
|
deep_norm: bool = False, |
|
has_relative_attention_bias: bool = False, |
|
num_buckets: int = 0, |
|
max_distance: int = 0, |
|
rescale_init: bool = False, |
|
gru_rel_pos: bool = False, |
|
encoder_layers: int = 0, |
|
) -> None: |
|
|
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.dropout = dropout |
|
self.activation_dropout = activation_dropout |
|
|
|
self.activation_name = activation_fn |
|
self.activation_fn = get_activation_fn(activation_fn) |
|
self.self_attn = MultiheadAttention( |
|
self.embedding_dim, |
|
num_attention_heads, |
|
dropout=attention_dropout, |
|
self_attention=True, |
|
has_relative_attention_bias=has_relative_attention_bias, |
|
num_buckets=num_buckets, |
|
max_distance=max_distance, |
|
rescale_init=rescale_init, |
|
gru_rel_pos=gru_rel_pos, |
|
) |
|
|
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(self.activation_dropout) |
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
self.layer_norm_first = layer_norm_first |
|
|
|
self.self_attn_layer_norm = LayerNorm(self.embedding_dim) |
|
|
|
if self.activation_name == "glu": |
|
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish") |
|
else: |
|
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) |
|
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) |
|
|
|
self.final_layer_norm = LayerNorm(self.embedding_dim) |
|
|
|
self.deep_norm = deep_norm |
|
if self.deep_norm: |
|
self.deep_norm_alpha = math.pow(2 * encoder_layers, 1 / 4) |
|
else: |
|
self.deep_norm_alpha = 1 |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
self_attn_mask: torch.Tensor = None, |
|
self_attn_padding_mask: torch.Tensor = None, |
|
need_weights: bool = False, |
|
pos_bias=None |
|
): |
|
residual = x |
|
|
|
if self.layer_norm_first: |
|
x = self.self_attn_layer_norm(x) |
|
x, attn, pos_bias = self.self_attn( |
|
query=x, |
|
key=x, |
|
value=x, |
|
key_padding_mask=self_attn_padding_mask, |
|
need_weights=False, |
|
attn_mask=self_attn_mask, |
|
position_bias=pos_bias |
|
) |
|
x = self.dropout1(x) |
|
x = residual + x |
|
|
|
residual = x |
|
x = self.final_layer_norm(x) |
|
if self.activation_name == "glu": |
|
x = self.fc1(x) |
|
else: |
|
x = self.activation_fn(self.fc1(x)) |
|
x = self.dropout2(x) |
|
x = self.fc2(x) |
|
x = self.dropout3(x) |
|
x = residual + x |
|
else: |
|
x, attn, pos_bias = self.self_attn( |
|
query=x, |
|
key=x, |
|
value=x, |
|
key_padding_mask=self_attn_padding_mask, |
|
need_weights=need_weights, |
|
attn_mask=self_attn_mask, |
|
position_bias=pos_bias |
|
) |
|
|
|
x = self.dropout1(x) |
|
x = residual * self.deep_norm_alpha + x |
|
|
|
x = self.self_attn_layer_norm(x) |
|
|
|
residual = x |
|
if self.activation_name == "glu": |
|
x = self.fc1(x) |
|
else: |
|
x = self.activation_fn(self.fc1(x)) |
|
x = self.dropout2(x) |
|
x = self.fc2(x) |
|
x = self.dropout3(x) |
|
x = residual * self.deep_norm_alpha + x |
|
x = self.final_layer_norm(x) |
|
|
|
return x, attn, pos_bias |
|
|
|
|
|
class MultiheadAttention(nn.Module): |
|
"""Multi-headed attention. |
|
|
|
See "Attention Is All You Need" for more details. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
kdim=None, |
|
vdim=None, |
|
dropout=0.0, |
|
bias=True, |
|
add_bias_kv=False, |
|
add_zero_attn=False, |
|
self_attention=False, |
|
encoder_decoder_attention=False, |
|
q_noise=0.0, |
|
qn_block_size=8, |
|
has_relative_attention_bias=False, |
|
num_buckets=32, |
|
max_distance=128, |
|
gru_rel_pos=False, |
|
rescale_init=False, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim |
|
|
|
self.num_heads = num_heads |
|
self.dropout_module = nn.Dropout(dropout) |
|
|
|
self.has_relative_attention_bias = has_relative_attention_bias |
|
self.num_buckets = num_buckets |
|
self.max_distance = max_distance |
|
if self.has_relative_attention_bias: |
|
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads) |
|
|
|
self.head_dim = embed_dim // num_heads |
|
self.q_head_dim = self.head_dim |
|
self.k_head_dim = self.head_dim |
|
assert ( |
|
self.head_dim * num_heads == self.embed_dim |
|
), "embed_dim must be divisible by num_heads" |
|
self.scaling = self.head_dim ** -0.5 |
|
|
|
self.self_attention = self_attention |
|
self.encoder_decoder_attention = encoder_decoder_attention |
|
|
|
assert not self.self_attention or self.qkv_same_dim, ( |
|
"Self-attention requires query, key and " "value to be of the same size" |
|
) |
|
|
|
k_bias = True |
|
if rescale_init: |
|
k_bias = False |
|
|
|
k_embed_dim = embed_dim |
|
q_embed_dim = embed_dim |
|
|
|
self.k_proj = quant_noise( |
|
nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size |
|
) |
|
self.v_proj = quant_noise( |
|
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
self.q_proj = quant_noise( |
|
nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
|
|
self.out_proj = quant_noise( |
|
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
|
|
if add_bias_kv: |
|
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
else: |
|
self.bias_k = self.bias_v = None |
|
|
|
self.add_zero_attn = add_zero_attn |
|
|
|
self.gru_rel_pos = gru_rel_pos |
|
if self.gru_rel_pos: |
|
self.grep_linear = nn.Linear(self.q_head_dim, 8) |
|
self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1)) |
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
if self.qkv_same_dim: |
|
|
|
|
|
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) |
|
else: |
|
nn.init.xavier_uniform_(self.k_proj.weight) |
|
nn.init.xavier_uniform_(self.v_proj.weight) |
|
nn.init.xavier_uniform_(self.q_proj.weight) |
|
|
|
nn.init.xavier_uniform_(self.out_proj.weight) |
|
if self.out_proj.bias is not None: |
|
nn.init.constant_(self.out_proj.bias, 0.0) |
|
if self.bias_k is not None: |
|
nn.init.xavier_normal_(self.bias_k) |
|
if self.bias_v is not None: |
|
nn.init.xavier_normal_(self.bias_v) |
|
if self.has_relative_attention_bias: |
|
nn.init.xavier_normal_(self.relative_attention_bias.weight) |
|
|
|
def _relative_positions_bucket(self, relative_positions, bidirectional=True): |
|
num_buckets = self.num_buckets |
|
max_distance = self.max_distance |
|
relative_buckets = 0 |
|
|
|
if bidirectional: |
|
num_buckets = num_buckets // 2 |
|
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets |
|
relative_positions = torch.abs(relative_positions) |
|
else: |
|
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions)) |
|
|
|
max_exact = num_buckets // 2 |
|
is_small = relative_positions < max_exact |
|
|
|
relative_postion_if_large = max_exact + ( |
|
torch.log(relative_positions.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.long) |
|
relative_postion_if_large = torch.min( |
|
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1) |
|
) |
|
|
|
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large) |
|
return relative_buckets |
|
|
|
def compute_bias(self, query_length, key_length): |
|
context_position = torch.arange(query_length, dtype=torch.long)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long)[None, :] |
|
relative_position = memory_position - context_position |
|
relative_position_bucket = self._relative_positions_bucket( |
|
relative_position, |
|
bidirectional=True |
|
) |
|
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device) |
|
values = self.relative_attention_bias(relative_position_bucket) |
|
values = values.permute([2, 0, 1]) |
|
return values |
|
|
|
def forward( |
|
self, |
|
query, |
|
key: Optional[Tensor], |
|
value: Optional[Tensor], |
|
key_padding_mask: Optional[Tensor] = None, |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, |
|
need_weights: bool = True, |
|
static_kv: bool = False, |
|
attn_mask: Optional[Tensor] = None, |
|
before_softmax: bool = False, |
|
need_head_weights: bool = False, |
|
position_bias: Optional[Tensor] = None |
|
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: |
|
"""Input shape: Time x Batch x Channel |
|
|
|
Args: |
|
key_padding_mask (ByteTensor, optional): mask to exclude |
|
keys that are pads, of shape `(batch, src_len)`, where |
|
padding elements are indicated by 1s. |
|
need_weights (bool, optional): return the attention weights, |
|
averaged over heads (default: False). |
|
attn_mask (ByteTensor, optional): typically used to |
|
implement causal attention, where the mask prevents the |
|
attention from looking forward in time (default: None). |
|
before_softmax (bool, optional): return the raw attention |
|
weights and values before the attention softmax. |
|
need_head_weights (bool, optional): return the attention |
|
weights for each head. Implies *need_weights*. Default: |
|
return the average attention weights over all heads. |
|
""" |
|
if need_head_weights: |
|
need_weights = True |
|
|
|
is_tpu = query.device.type == "xla" |
|
|
|
tgt_len, bsz, embed_dim = query.size() |
|
src_len = tgt_len |
|
assert embed_dim == self.embed_dim |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
if key is not None: |
|
src_len, key_bsz, _ = key.size() |
|
if not torch.jit.is_scripting(): |
|
assert key_bsz == bsz |
|
assert value is not None |
|
assert src_len, bsz == value.shape[:2] |
|
|
|
if self.has_relative_attention_bias and position_bias is None: |
|
position_bias = self.compute_bias(tgt_len, src_len) |
|
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if saved_state is not None and "prev_key" in saved_state: |
|
|
|
|
|
if static_kv: |
|
assert self.encoder_decoder_attention and not self.self_attention |
|
key = value = None |
|
else: |
|
saved_state = None |
|
|
|
if self.self_attention: |
|
q = self.q_proj(query) |
|
k = self.k_proj(query) |
|
v = self.v_proj(query) |
|
elif self.encoder_decoder_attention: |
|
|
|
q = self.q_proj(query) |
|
if key is None: |
|
assert value is None |
|
k = v = None |
|
else: |
|
k = self.k_proj(key) |
|
v = self.v_proj(key) |
|
|
|
else: |
|
assert key is not None and value is not None |
|
q = self.q_proj(query) |
|
k = self.k_proj(key) |
|
v = self.v_proj(value) |
|
q *= self.scaling |
|
alpha = 32 |
|
q *= 1 / alpha |
|
|
|
if self.bias_k is not None: |
|
assert self.bias_v is not None |
|
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) |
|
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat( |
|
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 |
|
) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[ |
|
key_padding_mask, |
|
key_padding_mask.new_zeros(key_padding_mask.size(0), 1), |
|
], |
|
dim=1, |
|
) |
|
|
|
q = ( |
|
q.contiguous() |
|
.view(tgt_len, bsz * self.num_heads, self.q_head_dim) |
|
.transpose(0, 1) |
|
) |
|
if k is not None: |
|
k = ( |
|
k.contiguous() |
|
.view(-1, bsz * self.num_heads, self.k_head_dim) |
|
.transpose(0, 1) |
|
) |
|
if v is not None: |
|
v = ( |
|
v.contiguous() |
|
.view(-1, bsz * self.num_heads, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
|
|
if saved_state is not None: |
|
|
|
if "prev_key" in saved_state: |
|
_prev_key = saved_state["prev_key"] |
|
assert _prev_key is not None |
|
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
k = prev_key |
|
else: |
|
assert k is not None |
|
k = torch.cat([prev_key, k], dim=1) |
|
src_len = k.size(1) |
|
if "prev_value" in saved_state: |
|
_prev_value = saved_state["prev_value"] |
|
assert _prev_value is not None |
|
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
v = prev_value |
|
else: |
|
assert v is not None |
|
v = torch.cat([prev_value, v], dim=1) |
|
prev_key_padding_mask: Optional[Tensor] = None |
|
if "prev_key_padding_mask" in saved_state: |
|
prev_key_padding_mask = saved_state["prev_key_padding_mask"] |
|
assert k is not None and v is not None |
|
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( |
|
key_padding_mask=key_padding_mask, |
|
prev_key_padding_mask=prev_key_padding_mask, |
|
batch_size=bsz, |
|
src_len=k.size(1), |
|
static_kv=static_kv, |
|
) |
|
|
|
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state["prev_key_padding_mask"] = key_padding_mask |
|
|
|
assert incremental_state is not None |
|
incremental_state = self._set_input_buffer(incremental_state, saved_state) |
|
assert k is not None |
|
assert k.size(1) == src_len |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dim() == 0: |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == src_len |
|
|
|
if self.add_zero_attn: |
|
assert v is not None |
|
src_len += 1 |
|
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) |
|
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat( |
|
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 |
|
) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[ |
|
key_padding_mask, |
|
torch.zeros(key_padding_mask.size(0), 1).type_as( |
|
key_padding_mask |
|
), |
|
], |
|
dim=1, |
|
) |
|
|
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
attn_weights = (attn_weights - attn_weights.max(dim=-1, keepdim=True)[0]) * alpha |
|
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) |
|
|
|
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
attn_weights += attn_mask |
|
|
|
if key_padding_mask is not None: |
|
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
if not is_tpu: |
|
attn_weights = attn_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), |
|
float("-inf"), |
|
) |
|
else: |
|
attn_weights = attn_weights.transpose(0, 2) |
|
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) |
|
attn_weights = attn_weights.transpose(0, 2) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if before_softmax: |
|
return attn_weights, v, position_bias |
|
|
|
if position_bias is not None: |
|
attn_mask_rel_pos = position_bias |
|
if self.gru_rel_pos == 1: |
|
query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim) * alpha / self.scaling |
|
_B, _H, _L, __ = query_layer.size() |
|
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view( |
|
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1) |
|
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 |
|
attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, tgt_len, 1) * position_bias |
|
|
|
attn_mask_rel_pos = attn_mask_rel_pos.view(attn_weights.size()) |
|
|
|
attn_weights = attn_weights + attn_mask_rel_pos |
|
|
|
attn_weights_float = F.softmax( |
|
attn_weights, dim=-1 |
|
) |
|
attn_weights = attn_weights_float.type_as(attn_weights) |
|
attn_probs = self.dropout_module(attn_weights) |
|
|
|
assert v is not None |
|
attn = torch.bmm(attn_probs, v) |
|
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] |
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn = self.out_proj(attn) |
|
attn_weights: Optional[Tensor] = None |
|
if need_weights: |
|
attn_weights = attn_weights_float.view( |
|
bsz, self.num_heads, tgt_len, src_len |
|
).transpose(1, 0) |
|
if not need_head_weights: |
|
|
|
attn_weights = attn_weights.mean(dim=0) |
|
|
|
return attn, attn_weights, position_bias |
|
|
|
@staticmethod |
|
def _append_prev_key_padding_mask( |
|
key_padding_mask: Optional[Tensor], |
|
prev_key_padding_mask: Optional[Tensor], |
|
batch_size: int, |
|
src_len: int, |
|
static_kv: bool, |
|
) -> Optional[Tensor]: |
|
|
|
if prev_key_padding_mask is not None and static_kv: |
|
new_key_padding_mask = prev_key_padding_mask |
|
elif prev_key_padding_mask is not None and key_padding_mask is not None: |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 |
|
) |
|
|
|
|
|
|
|
elif prev_key_padding_mask is not None: |
|
if src_len > prev_key_padding_mask.size(1): |
|
filler = torch.zeros( |
|
(batch_size, src_len - prev_key_padding_mask.size(1)), |
|
device=prev_key_padding_mask.device, |
|
) |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), filler.float()], dim=1 |
|
) |
|
else: |
|
new_key_padding_mask = prev_key_padding_mask.float() |
|
elif key_padding_mask is not None: |
|
if src_len > key_padding_mask.size(1): |
|
filler = torch.zeros( |
|
(batch_size, src_len - key_padding_mask.size(1)), |
|
device=key_padding_mask.device, |
|
) |
|
new_key_padding_mask = torch.cat( |
|
[filler.float(), key_padding_mask.float()], dim=1 |
|
) |
|
else: |
|
new_key_padding_mask = key_padding_mask.float() |
|
else: |
|
new_key_padding_mask = prev_key_padding_mask |
|
return new_key_padding_mask |
|
|
|
def _get_input_buffer( |
|
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] |
|
) -> Dict[str, Optional[Tensor]]: |
|
result = self.get_incremental_state(incremental_state, "attn_state") |
|
if result is not None: |
|
return result |
|
else: |
|
empty_result: Dict[str, Optional[Tensor]] = {} |
|
return empty_result |
|
|
|
def _set_input_buffer( |
|
self, |
|
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], |
|
buffer: Dict[str, Optional[Tensor]], |
|
): |
|
return self.set_incremental_state(incremental_state, "attn_state", buffer) |
|
|
|
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): |
|
return attn_weights |
|
|
|
|
|
def init_bert_params(module): |
|
""" |
|
Initialize the weights specific to the BERT Model. |
|
This overrides the default initializations depending on the specified arguments. |
|
1. If normal_init_linear_weights is set then weights of linear |
|
layer will be initialized using the normal distribution and |
|
bais will be set to the specified value. |
|
2. If normal_init_embed_weights is set then weights of embedding |
|
layer will be initialized using the normal distribution. |
|
3. If normal_init_proj_weights is set then weights of |
|
in_project_weight for MultiHeadAttention initialized using |
|
the normal distribution (to be validated). |
|
""" |
|
|
|
def normal_(data): |
|
|
|
|
|
data.copy_( |
|
data.cpu().normal_(mean=0.0, std=0.02).to(data.device) |
|
) |
|
|
|
if isinstance(module, nn.Linear): |
|
normal_(module.weight.data) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
if isinstance(module, nn.Embedding): |
|
normal_(module.weight.data) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
if isinstance(module, MultiheadAttention): |
|
normal_(module.q_proj.weight.data) |
|
normal_(module.k_proj.weight.data) |
|
normal_(module.v_proj.weight.data) |
|
|
|
|
|
|
|
class GradMultiply(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x, scale): |
|
ctx.scale = scale |
|
res = x.new(x) |
|
return res |
|
|
|
@staticmethod |
|
def backward(ctx, grad): |
|
return grad * ctx.scale, None |
|
|
|
|
|
class SamePad(nn.Module): |
|
def __init__(self, kernel_size, causal=False): |
|
super().__init__() |
|
if causal: |
|
self.remove = kernel_size - 1 |
|
else: |
|
self.remove = 1 if kernel_size % 2 == 0 else 0 |
|
|
|
def forward(self, x): |
|
if self.remove > 0: |
|
x = x[:, :, : -self.remove] |
|
return x |
|
|
|
|
|
class Swish(nn.Module): |
|
def __init__(self): |
|
super(Swish, self).__init__() |
|
self.act = torch.nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
return x * self.act(x) |
|
|
|
|
|
class GLU_Linear(nn.Module): |
|
def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True): |
|
super(GLU_Linear, self).__init__() |
|
|
|
self.glu_type = glu_type |
|
self.output_dim = output_dim |
|
|
|
if glu_type == "sigmoid": |
|
self.glu_act = torch.nn.Sigmoid() |
|
elif glu_type == "swish": |
|
self.glu_act = Swish() |
|
elif glu_type == "relu": |
|
self.glu_act = torch.nn.ReLU() |
|
elif glu_type == "gelu": |
|
self.glu_act = torch.nn.GELU() |
|
|
|
if bias_in_glu: |
|
self.linear = nn.Linear(input_dim, output_dim * 2, True) |
|
else: |
|
self.linear = nn.Linear(input_dim, output_dim * 2, False) |
|
|
|
def forward(self, x): |
|
|
|
x = self.linear(x) |
|
|
|
if self.glu_type == "bilinear": |
|
x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2]) |
|
else: |
|
x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2])) |
|
|
|
return x |
|
|
|
|
|
def gelu_accurate(x): |
|
if not hasattr(gelu_accurate, "_a"): |
|
gelu_accurate._a = math.sqrt(2 / math.pi) |
|
return ( |
|
0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) |
|
) |
|
|
|
|
|
def gelu(x: torch.Tensor) -> torch.Tensor: |
|
return torch.nn.functional.gelu(x.float()).type_as(x) |
|
|
|
|
|
def get_activation_fn(activation: str): |
|
"""Returns the activation function corresponding to `activation`""" |
|
|
|
if activation == "relu": |
|
return F.relu |
|
elif activation == "gelu": |
|
return gelu |
|
elif activation == "gelu_fast": |
|
warnings.warn( |
|
"--activation-fn=gelu_fast has been renamed to gelu_accurate" |
|
) |
|
return gelu_accurate |
|
elif activation == "gelu_accurate": |
|
return gelu_accurate |
|
elif activation == "tanh": |
|
return torch.tanh |
|
elif activation == "linear": |
|
return lambda x: x |
|
elif activation == "glu": |
|
return lambda x: x |
|
else: |
|
raise RuntimeError("--activation-fn {} not supported".format(activation)) |
|
|
|
|
|
def quant_noise(module, p, block_size): |
|
""" |
|
Wraps modules and applies quantization noise to the weights for |
|
subsequent quantization with Iterative Product Quantization as |
|
described in "Training with Quantization Noise for Extreme Model Compression" |
|
|
|
Args: |
|
- module: nn.Module |
|
- p: amount of Quantization Noise |
|
- block_size: size of the blocks for subsequent quantization with iPQ |
|
|
|
Remarks: |
|
- Module weights must have the right sizes wrt the block size |
|
- Only Linear, Embedding and Conv2d modules are supported for the moment |
|
- For more detail on how to quantize by blocks with convolutional weights, |
|
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" |
|
- We implement the simplest form of noise here as stated in the paper |
|
which consists in randomly dropping blocks |
|
""" |
|
|
|
|
|
if p <= 0: |
|
return module |
|
|
|
|
|
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) |
|
|
|
|
|
is_conv = module.weight.ndim == 4 |
|
|
|
|
|
if not is_conv: |
|
assert ( |
|
module.weight.size(1) % block_size == 0 |
|
), "Input features must be a multiple of block sizes" |
|
|
|
|
|
else: |
|
|
|
if module.kernel_size == (1, 1): |
|
assert ( |
|
module.in_channels % block_size == 0 |
|
), "Input channels must be a multiple of block sizes" |
|
|
|
else: |
|
k = module.kernel_size[0] * module.kernel_size[1] |
|
assert k % block_size == 0, "Kernel size must be a multiple of block size" |
|
|
|
def _forward_pre_hook(mod, input): |
|
|
|
if mod.training: |
|
if not is_conv: |
|
|
|
weight = mod.weight |
|
in_features = weight.size(1) |
|
out_features = weight.size(0) |
|
|
|
|
|
mask = torch.zeros( |
|
in_features // block_size * out_features, device=weight.device |
|
) |
|
mask.bernoulli_(p) |
|
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) |
|
|
|
else: |
|
|
|
weight = mod.weight |
|
in_channels = mod.in_channels |
|
out_channels = mod.out_channels |
|
|
|
|
|
if mod.kernel_size == (1, 1): |
|
mask = torch.zeros( |
|
int(in_channels // block_size * out_channels), |
|
device=weight.device, |
|
) |
|
mask.bernoulli_(p) |
|
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) |
|
else: |
|
mask = torch.zeros( |
|
weight.size(0), weight.size(1), device=weight.device |
|
) |
|
mask.bernoulli_(p) |
|
mask = ( |
|
mask.unsqueeze(2) |
|
.unsqueeze(3) |
|
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) |
|
) |
|
|
|
|
|
mask = mask.to( |
|
torch.bool |
|
) |
|
s = 1 / (1 - p) |
|
mod.weight.data = s * weight.masked_fill(mask, 0) |
|
|
|
module.register_forward_pre_hook(_forward_pre_hook) |
|
return module |
|
|
|
|
|
class TokenizersConfig: |
|
def __init__(self, cfg=None): |
|
self.input_patch_size: int = -1 |
|
self.embed_dim: int = 512 |
|
self.conv_bias: bool = False |
|
|
|
self.encoder_layers: int = 12 |
|
self.encoder_embed_dim: int = 768 |
|
self.encoder_ffn_embed_dim: int = 3072 |
|
self.encoder_attention_heads: int = 12 |
|
self.activation_fn: str = "gelu" |
|
|
|
self.layer_norm_first: bool = False |
|
self.deep_norm: bool = False |
|
|
|
|
|
self.dropout: float = 0.1 |
|
self.attention_dropout: float = 0.1 |
|
self.activation_dropout: float = 0.0 |
|
self.encoder_layerdrop: float = 0.0 |
|
self.dropout_input: float = 0.0 |
|
|
|
|
|
self.conv_pos: int = 128 |
|
self.conv_pos_groups: int = 16 |
|
|
|
|
|
self.relative_position_embedding: bool = False |
|
self.num_buckets: int = 320 |
|
self.max_distance: int = 1280 |
|
self.gru_rel_pos: bool = False |
|
|
|
|
|
self.quant_n: int = 1024 |
|
self.quant_dim: int = 256 |
|
|
|
if cfg is not None: |
|
self.update(cfg) |
|
|
|
def update(self, cfg: dict): |
|
self.__dict__.update(cfg) |
|
|
|
|
|
class Tokenizers(nn.Module): |
|
def __init__( |
|
self, |
|
cfg: TokenizersConfig, |
|
) -> None: |
|
super().__init__() |
|
logger.info(f"Tokenizers Config: {cfg.__dict__}") |
|
|
|
self.cfg = cfg |
|
|
|
self.embed = cfg.embed_dim |
|
self.post_extract_proj = ( |
|
nn.Linear(self.embed, cfg.encoder_embed_dim) |
|
if self.embed != cfg.encoder_embed_dim |
|
else None |
|
) |
|
|
|
self.input_patch_size = cfg.input_patch_size |
|
self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size, |
|
bias=cfg.conv_bias) |
|
|
|
self.dropout_input = nn.Dropout(cfg.dropout_input) |
|
|
|
assert not cfg.deep_norm or not cfg.layer_norm_first |
|
self.encoder = TransformerEncoder(cfg) |
|
self.layer_norm = LayerNorm(self.embed) |
|
|
|
self.quantize = NormEMAVectorQuantizer( |
|
n_embed=cfg.quant_n, embedding_dim=cfg.quant_dim, beta=1.0, kmeans_init=True, decay=0.99, |
|
) |
|
self.quant_n = cfg.quant_n |
|
self.quantize_layer = nn.Sequential( |
|
nn.Linear(cfg.encoder_embed_dim, cfg.encoder_embed_dim), |
|
nn.Tanh(), |
|
nn.Linear(cfg.encoder_embed_dim, cfg.quant_dim) |
|
) |
|
|
|
def forward_padding_mask( |
|
self, |
|
features: torch.Tensor, |
|
padding_mask: torch.Tensor, |
|
) -> torch.Tensor: |
|
extra = padding_mask.size(1) % features.size(1) |
|
if extra > 0: |
|
padding_mask = padding_mask[:, :-extra] |
|
padding_mask = padding_mask.view( |
|
padding_mask.size(0), features.size(1), -1 |
|
) |
|
padding_mask = padding_mask.all(-1) |
|
return padding_mask |
|
|
|
def preprocess( |
|
self, |
|
source: torch.Tensor, |
|
fbank_mean: float = 15.41663, |
|
fbank_std: float = 6.55582, |
|
) -> torch.Tensor: |
|
fbanks = [] |
|
for waveform in source: |
|
waveform = waveform.unsqueeze(0) * 2 ** 15 |
|
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10) |
|
fbanks.append(fbank) |
|
fbank = torch.stack(fbanks, dim=0) |
|
fbank = (fbank - fbank_mean) / (2 * fbank_std) |
|
return fbank |
|
|
|
def extract_labels( |
|
self, |
|
source: torch.Tensor, |
|
padding_mask: Optional[torch.Tensor] = None, |
|
fbank_mean: float = 15.41663, |
|
fbank_std: float = 6.55582, |
|
): |
|
fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std) |
|
|
|
if padding_mask is not None: |
|
padding_mask = self.forward_padding_mask(fbank, padding_mask) |
|
|
|
fbank = fbank.unsqueeze(1) |
|
features = self.patch_embedding(fbank) |
|
features = features.reshape(features.shape[0], features.shape[1], -1) |
|
features = features.transpose(1, 2) |
|
features = self.layer_norm(features) |
|
|
|
if padding_mask is not None: |
|
padding_mask = self.forward_padding_mask(features, padding_mask) |
|
|
|
if self.post_extract_proj is not None: |
|
features = self.post_extract_proj(features) |
|
|
|
x = self.dropout_input(features) |
|
|
|
x, layer_results = self.encoder( |
|
x, |
|
padding_mask=padding_mask, |
|
) |
|
|
|
quantize_input = self.quantize_layer(x) |
|
quantize_feature, embed_loss, embed_ind = self.quantize(quantize_input) |
|
|
|
return embed_ind |
|
|
|
|
|
def l2norm(t): |
|
return F.normalize(t, p=2, dim=-1) |
|
|
|
|
|
def ema_inplace(moving_avg, new, decay): |
|
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) |
|
|
|
|
|
def sample_vectors(samples, num): |
|
num_samples, device = samples.shape[0], samples.device |
|
|
|
if num_samples >= num: |
|
indices = torch.randperm(num_samples, device=device)[:num] |
|
else: |
|
indices = torch.randint(0, num_samples, (num,), device=device) |
|
|
|
return samples[indices] |
|
|
|
|
|
def kmeans(samples, num_clusters, num_iters=10, use_cosine_sim=False): |
|
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device |
|
|
|
means = sample_vectors(samples, num_clusters) |
|
|
|
for _ in range(num_iters): |
|
if use_cosine_sim: |
|
dists = samples @ means.t() |
|
else: |
|
diffs = rearrange(samples, 'n d -> n () d') \ |
|
- rearrange(means, 'c d -> () c d') |
|
dists = -(diffs ** 2).sum(dim=-1) |
|
|
|
buckets = dists.max(dim=-1).indices |
|
bins = torch.bincount(buckets, minlength=num_clusters) |
|
zero_mask = bins == 0 |
|
bins_min_clamped = bins.masked_fill(zero_mask, 1) |
|
|
|
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) |
|
new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d=dim), samples) |
|
new_means = new_means / bins_min_clamped[..., None] |
|
|
|
if use_cosine_sim: |
|
new_means = l2norm(new_means) |
|
|
|
means = torch.where(zero_mask[..., None], means, new_means) |
|
|
|
return means, bins |
|
|
|
|
|
class EmbeddingEMA(nn.Module): |
|
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5, kmeans_init=True, codebook_init_path=''): |
|
super().__init__() |
|
self.num_tokens = num_tokens |
|
self.codebook_dim = codebook_dim |
|
self.decay = decay |
|
self.eps = eps |
|
if codebook_init_path == '': |
|
if not kmeans_init: |
|
weight = torch.randn(num_tokens, codebook_dim) |
|
weight = l2norm(weight) |
|
else: |
|
weight = torch.zeros(num_tokens, codebook_dim) |
|
self.register_buffer('initted', torch.Tensor([not kmeans_init])) |
|
else: |
|
print(f"load init codebook weight from {codebook_init_path}") |
|
codebook_ckpt_weight = torch.load(codebook_init_path, map_location='cpu') |
|
weight = codebook_ckpt_weight.clone() |
|
self.register_buffer('initted', torch.Tensor([True])) |
|
|
|
self.weight = nn.Parameter(weight, requires_grad=False) |
|
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False) |
|
self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False) |
|
|
|
self.update = True |
|
|
|
@torch.jit.ignore |
|
def init_embed_(self, data): |
|
if self.initted: |
|
return |
|
print("Performing Kemans init for codebook") |
|
embed, cluster_size = kmeans(data, self.num_tokens, 10, use_cosine_sim=True) |
|
self.weight.data.copy_(embed) |
|
self.cluster_size.data.copy_(cluster_size) |
|
self.initted.data.copy_(torch.Tensor([True])) |
|
|
|
def forward(self, embed_id): |
|
return F.embedding(embed_id, self.weight) |
|
|
|
def cluster_size_ema_update(self, new_cluster_size): |
|
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay) |
|
|
|
def embed_avg_ema_update(self, new_embed_avg): |
|
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay) |
|
|
|
def weight_update(self, num_tokens): |
|
n = self.cluster_size.sum() |
|
smoothed_cluster_size = ( |
|
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n |
|
) |
|
|
|
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) |
|
|
|
self.weight.data.copy_(embed_normalized) |
|
|
|
|
|
def norm_ema_inplace(moving_avg, new, decay): |
|
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) |
|
moving_avg.data.copy_(l2norm(moving_avg.data)) |
|
|
|
|
|
class NormEMAVectorQuantizer(nn.Module): |
|
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5, |
|
statistic_code_usage=True, kmeans_init=False, codebook_init_path=''): |
|
super().__init__() |
|
self.codebook_dim = embedding_dim |
|
self.num_tokens = n_embed |
|
self.beta = beta |
|
self.decay = decay |
|
|
|
|
|
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps, kmeans_init, codebook_init_path) |
|
|
|
self.statistic_code_usage = statistic_code_usage |
|
if statistic_code_usage: |
|
self.register_buffer('cluster_size', torch.zeros(n_embed)) |
|
if distributed.is_available() and distributed.is_initialized(): |
|
print("ddp is enable, so use ddp_reduce to sync the statistic_code_usage for each gpu!") |
|
self.all_reduce_fn = distributed.all_reduce |
|
else: |
|
self.all_reduce_fn = nn.Identity() |
|
|
|
def reset_cluster_size(self, device): |
|
if self.statistic_code_usage: |
|
self.register_buffer('cluster_size', torch.zeros(self.num_tokens)) |
|
self.cluster_size = self.cluster_size.to(device) |
|
|
|
def forward(self, z): |
|
|
|
|
|
|
|
|
|
z = l2norm(z) |
|
z_flattened = z.reshape(-1, self.codebook_dim) |
|
|
|
self.embedding.init_embed_(z_flattened) |
|
|
|
d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \ |
|
self.embedding.weight.pow(2).sum(dim=1) - 2 * \ |
|
torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) |
|
|
|
encoding_indices = torch.argmin(d, dim=1) |
|
|
|
z_q = self.embedding(encoding_indices).view(z.shape) |
|
|
|
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) |
|
|
|
if not self.training: |
|
with torch.no_grad(): |
|
cluster_size = encodings.sum(0) |
|
self.all_reduce_fn(cluster_size) |
|
ema_inplace(self.cluster_size, cluster_size, self.decay) |
|
|
|
if self.training and self.embedding.update: |
|
|
|
|
|
bins = encodings.sum(0) |
|
self.all_reduce_fn(bins) |
|
|
|
|
|
ema_inplace(self.cluster_size, bins, self.decay) |
|
|
|
zero_mask = (bins == 0) |
|
bins = bins.masked_fill(zero_mask, 1.) |
|
|
|
embed_sum = z_flattened.t() @ encodings |
|
self.all_reduce_fn(embed_sum) |
|
|
|
embed_normalized = (embed_sum / bins.unsqueeze(0)).t() |
|
embed_normalized = l2norm(embed_normalized) |
|
|
|
embed_normalized = torch.where(zero_mask[..., None], self.embedding.weight, |
|
embed_normalized) |
|
norm_ema_inplace(self.embedding.weight, embed_normalized, self.decay) |
|
|
|
|
|
loss = self.beta * F.mse_loss(z_q.detach(), z) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
|
|
|
|
|
|
return z_q, loss, encoding_indices |