File size: 6,669 Bytes
d814004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd50fee
d814004
 
 
 
 
 
 
 
 
 
 
dd50fee
 
d814004
dd50fee
d814004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd50fee
 
 
 
d814004
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
datasets:
- code_search_net
metrics:
- bleu
model-index:
- name: base_model_base_tokenizer
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: code_search_net
      type: code_search_net
      config: python
      split: test
      args: python
    metrics:
    - name: Bleu
      type: bleu
      value: 0.07436414625113424
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# base_model_base_tokenizer

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the code_search_net dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1017
- Bleu: 0.0744
- Precisions: [0.37389569483256924, 0.14063645643779682, 0.07580332788787783, 0.045527148854836816]
- Brevity Penalty: 0.6407
- Length Ratio: 0.6920
- Translation Length: 585436
- Reference Length: 846059

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step   | Bleu   | Brevity Penalty | Length Ratio | Validation Loss | Precisions                                                                            | Reference Length | Translation Length |
|:-------------:|:-----:|:------:|:------:|:---------------:|:------------:|:---------------:|:-------------------------------------------------------------------------------------:|:----------------:|:------------------:|
| 2.4273        | 1.0   | 25762  | 0.0665 | 0.6794          | 0.7212       | 2.3438          | [0.34926724858481134, 0.12159425046725157, 0.062078959459937084, 0.03489467043820187] | 846059           | 610166             |
| 2.3512        | 2.0   | 51524  | 0.0733 | 0.7181          | 0.7512       | 2.2643          | [0.3534451290507329, 0.1262343107830303, 0.06531254968421979, 0.03721425521409004]    | 846059           | 635564             |
| 2.2525        | 3.0   | 77286  | 0.0691 | 0.6453          | 0.6954       | 2.2234          | [0.36523755211936504, 0.1318932094567742, 0.06891201805888993, 0.03961906221856018]   | 846059           | 588313             |
| 2.2252        | 4.0   | 103048 | 0.0726 | 0.7043          | 0.7404       | 2.1949          | [0.3601686933924165, 0.1283373434960897, 0.06578382296859486, 0.0371541685491374]     | 846059           | 626462             |
| 2.1523        | 5.0   | 128810 | 0.0703 | 0.6506          | 0.6994       | 2.1769          | [0.3663069159346027, 0.1334874876878427, 0.06959109409366254, 0.040003198275976946]   | 846059           | 591706             |
| 2.1027        | 6.0   | 154572 | 0.0650 | 0.5879          | 0.6531       | 2.1585          | [0.37335963586676196, 0.13614151644150174, 0.07119404952304512, 0.04138235959446398]  | 846059           | 552545             |
| 2.0458        | 7.0   | 180334 | 0.0682 | 0.6176          | 0.6748       | 2.1491          | [0.37062538973004405, 0.1355146147678402, 0.07123664846902444, 0.04155352506292986]   | 846059           | 570908             |
| 2.0594        | 8.0   | 206096 | 0.0702 | 0.6407          | 0.6919       | 2.1403          | [0.3700899171204657, 0.13524405355792343, 0.07062960711230036, 0.04081911815137772]   | 846059           | 585428             |
| 2.0459        | 9.0   | 231858 | 0.0635 | 0.5682          | 0.6388       | 2.1327          | [0.37916909499625345, 0.13810659289354987, 0.07176079868122479, 0.04160453545539102]  | 846059           | 540495             |
| 2.0029        | 10.0  | 257620 | 0.0684 | 0.6128          | 0.6713       | 2.1264          | [0.3745439691237164, 0.13731087325347474, 0.07204645620574554, 0.04194087964799725]   | 846059           | 567944             |
| 2.0107        | 11.0  | 283382 | 0.0697 | 0.6139          | 0.6721       | 2.1202          | [0.37538600600727345, 0.13908031254002817, 0.07356968494927149, 0.04326375560457764]  | 846059           | 568644             |
| 1.995         | 12.0  | 309144 | 0.0790 | 0.7220          | 0.7543       | 2.1192          | [0.3595232536092102, 0.1336969667453998, 0.07124298456393582, 0.04192048242921579]    | 846059           | 638159             |
| 1.9653        | 13.0  | 334906 | 0.0750 | 0.6727          | 0.7161       | 2.1158          | [0.3663186076760047, 0.13635359040297698, 0.07246562633002641, 0.04279559846361466]   | 846059           | 605836             |
| 1.9811        | 14.0  | 360668 | 0.0718 | 0.6325          | 0.6858       | 2.1096          | [0.37342310979981247, 0.13867710694415825, 0.0736328303569596, 0.043440268414579084]  | 846059           | 580256             |
| 1.9745        | 15.0  | 386430 | 0.0741 | 0.6592          | 0.7059       | 2.1060          | [0.36869699176985743, 0.13724429728380805, 0.07301699268383118, 0.04318353520566863]  | 846059           | 597195             |
| 1.939         | 16.0  | 412192 | 0.0706 | 0.6166          | 0.6740       | 2.1063          | [0.37537898781101553, 0.13979047848408885, 0.0742785001701673, 0.04399835661136439]   | 846059           | 570269             |
| 1.9177        | 17.0  | 437954 | 0.0757 | 0.6671          | 0.7118       | 2.1063          | [0.37017425883954735, 0.13833476986726426, 0.07389756751525232, 0.04386076232849102]  | 846059           | 602265             |
| 1.9265        | 18.0  | 463716 | 0.0717 | 0.6192          | 0.6760       | 2.1016          | [0.37650650333865443, 0.14089062050951845, 0.075366455530664, 0.045028150012067114]   | 846059           | 571937             |
| 1.9622        | 19.0  | 489478 | 0.0730 | 0.6288          | 0.6831       | 2.1022          | [0.3746837721013452, 0.1407333566053557, 0.07570910522025132, 0.045477562304123496]   | 846059           | 577906             |
| 1.9171        | 20.0  | 515240 | 2.1017 | 0.0744          | [0.37389569483256924, 0.14063645643779682, 0.07580332788787783, 0.045527148854836816]| 0.6407          | 0.6920                                                                                | 585436           | 846059             |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2