Initial Commit
Browse files- .gitattributes +1 -0
- README.md +57 -0
- args.yml +73 -0
- config.yml +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-Pendulum-v1.zip +3 -0
- tqc-Pendulum-v1/_stable_baselines3_version +1 -0
- tqc-Pendulum-v1/actor.optimizer.pth +3 -0
- tqc-Pendulum-v1/critic.optimizer.pth +3 -0
- tqc-Pendulum-v1/data +116 -0
- tqc-Pendulum-v1/ent_coef_optimizer.pth +3 -0
- tqc-Pendulum-v1/policy.pth +3 -0
- tqc-Pendulum-v1/pytorch_variables.pth +3 -0
- tqc-Pendulum-v1/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -171.32 +/- 96.54
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Pendulum-v1
|
20 |
+
type: Pendulum-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TQC** Agent playing **Pendulum-v1**
|
24 |
+
This is a trained model of a **TQC** agent playing **Pendulum-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo tqc --env Pendulum-v1 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo tqc --env Pendulum-v1 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo tqc --env Pendulum-v1 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo tqc --env Pendulum-v1 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('learning_rate', 0.001),
|
54 |
+
('n_timesteps', 20000),
|
55 |
+
('policy', 'MlpPolicy'),
|
56 |
+
('normalize', False)])
|
57 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- Pendulum-v1
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 5000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs/
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - n_eval_envs
|
23 |
+
- 1
|
24 |
+
- - n_evaluations
|
25 |
+
- null
|
26 |
+
- - n_jobs
|
27 |
+
- 1
|
28 |
+
- - n_startup_trials
|
29 |
+
- 10
|
30 |
+
- - n_timesteps
|
31 |
+
- -1
|
32 |
+
- - n_trials
|
33 |
+
- 500
|
34 |
+
- - no_optim_plots
|
35 |
+
- false
|
36 |
+
- - num_threads
|
37 |
+
- -1
|
38 |
+
- - optimization_log_path
|
39 |
+
- null
|
40 |
+
- - optimize_hyperparameters
|
41 |
+
- false
|
42 |
+
- - pruner
|
43 |
+
- median
|
44 |
+
- - sampler
|
45 |
+
- tpe
|
46 |
+
- - save_freq
|
47 |
+
- -1
|
48 |
+
- - save_replay_buffer
|
49 |
+
- false
|
50 |
+
- - seed
|
51 |
+
- 2347514426
|
52 |
+
- - storage
|
53 |
+
- null
|
54 |
+
- - study_name
|
55 |
+
- null
|
56 |
+
- - tensorboard_log
|
57 |
+
- ''
|
58 |
+
- - track
|
59 |
+
- false
|
60 |
+
- - trained_agent
|
61 |
+
- ''
|
62 |
+
- - truncate_last_trajectory
|
63 |
+
- true
|
64 |
+
- - uuid
|
65 |
+
- false
|
66 |
+
- - vec_env
|
67 |
+
- dummy
|
68 |
+
- - verbose
|
69 |
+
- 1
|
70 |
+
- - wandb_entity
|
71 |
+
- null
|
72 |
+
- - wandb_project_name
|
73 |
+
- sb3
|
config.yml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - learning_rate
|
3 |
+
- 0.001
|
4 |
+
- - n_timesteps
|
5 |
+
- 20000
|
6 |
+
- - policy
|
7 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b62acf4a992241ae9af3177aafad9dad123122ca29943b8023f4bb00f579c8d
|
3 |
+
size 230244
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -171.31813649999998, "std_reward": 96.53819756951812, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-22T22:35:48.222434"}
|
tqc-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b393e819b74e7060007fa84c5b8eab3851debb3368591d66478e9d199f6c2be3
|
3 |
+
size 3203058
|
tqc-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a6
|
tqc-Pendulum-v1/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3667db381eb9632de7c33ec91daa54cb4f534745d0b85aa578541942b0d6feb
|
3 |
+
size 542837
|
tqc-Pendulum-v1/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b62d6b356d627051d90d7f20a6e92a986fb3bf2949f124e4e89f31b21668e9c
|
3 |
+
size 1182045
|
tqc-Pendulum-v1/data
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7fb312384f80>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x7fb312388050>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fb3123880e0>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7fb312388170>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7fb312388200>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7fb312388290>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x7fb312388320>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x7fb3123883b0>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fb312388440>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7fb3123e54b0>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"use_sde": false
|
22 |
+
},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
3
|
29 |
+
],
|
30 |
+
"low": "[-1. -1. -8.]",
|
31 |
+
"high": "[1. 1. 8.]",
|
32 |
+
"bounded_below": "[ True True True]",
|
33 |
+
"bounded_above": "[ True True True]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
1
|
42 |
+
],
|
43 |
+
"low": "[-2.]",
|
44 |
+
"high": "[2.]",
|
45 |
+
"bounded_below": "[ True]",
|
46 |
+
"bounded_above": "[ True]",
|
47 |
+
"_np_random": "RandomState(MT19937)"
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 20000,
|
51 |
+
"_total_timesteps": 20000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1653251033.580683,
|
56 |
+
"learning_rate": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
59 |
+
},
|
60 |
+
"tensorboard_log": null,
|
61 |
+
"lr_schedule": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
64 |
+
},
|
65 |
+
"_last_obs": null,
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
69 |
+
},
|
70 |
+
"_last_original_obs": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAYefz8/7am9j6C8vZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
|
73 |
+
},
|
74 |
+
"_episode_num": 100,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9NxCV3KllsCUhpRSlIwBbJRLyIwBdJRHQASh4Uvf0mN1fZQoaAZoCWgPQwgqxvmbUL+QwJSGlFKUaBVLyGgWR0AbKHbh3qzJdX2UKGgGaAloD0MIUyCzs3hNncCUhpRSlGgVS8hoFkdAJ6XyqdYnv3V9lChoBmgJaA9DCIOG/gn+ppbAlIaUUpRoFUvIaBZHQDH5cv/R3Nd1fZQoaAZoCWgPQwjqlEc3MiyXwJSGlFKUaBVLyGgWR0A4OekHlfZ3dX2UKGgGaAloD0MIcFzGTS29mMCUhpRSlGgVS8hoFkdAPjoT4+KTCHV9lChoBmgJaA9DCLeYnxuKmJTAlIaUUpRoFUvIaBZHQEKO/M4cWCV1fZQoaAZoCWgPQwiWCiqq3nyUwJSGlFKUaBVLyGgWR0BGhx4QjD8+dX2UKGgGaAloD0MIlpaRej8Nk8CUhpRSlGgVS8hoFkdASlbk6tDD0nV9lChoBmgJaA9DCAVu3c3zHZLAlIaUUpRoFUvIaBZHQE2/HZsbedl1fZQoaAZoCWgPQwg2eF+Va7yOwJSGlFKUaBVLyGgWR0BQuLH6uW8idX2UKGgGaAloD0MITvIjfmVigMCUhpRSlGgVS8hoFkdAUoLnwG4ZuXV9lChoBmgJaA9DCFbxRuaRRYTAlIaUUpRoFUvIaBZHQFRNzjm0VrR1fZQoaAZoCWgPQwjp0r8kFXFwwJSGlFKUaBVLyGgWR0BWHx+nZTQ3dX2UKGgGaAloD0MI5C8t6hPOYMCUhpRSlGgVS8hoFkdAV63ND+irUHV9lChoBmgJaA9DCNMtO8RvF5XAlIaUUpRoFUvIaBZHQFlPapxWDHx1fZQoaAZoCWgPQwgtsMdEyud4wJSGlFKUaBVLyGgWR0BbhUxREWqMdX2UKGgGaAloD0MIAI49e24AdsCUhpRSlGgVS8hoFkdAXcmpeeFtbnV9lChoBmgJaA9DCLQ+5ZisR2/AlIaUUpRoFUvIaBZHQF/8S8an7551fZQoaAZoCWgPQwgFhxdEJBhgwJSGlFKUaBVLyGgWR0Bg8ilLvkR0dX2UKGgGaAloD0MIwY7/AkFfXsCUhpRSlGgVS8hoFkdAYeeeoUBXCHV9lChoBmgJaA9DCOsZwjHLRF7AlIaUUpRoFUvIaBZHQGLihXr+o991fZQoaAZoCWgPQwhiSbn7HBhewJSGlFKUaBVLyGgWR0Bj72OS4e90dX2UKGgGaAloD0MIineAJy0njcCUhpRSlGgVS8hoFkdAZPwVv/BFeHV9lChoBmgJaA9DCCuHFtnOnlzAlIaUUpRoFUvIaBZHQGX0ui35N491fZQoaAZoCWgPQwg9CtejcH3+v5SGlFKUaBVLyGgWR0Bm5h+F10T2dX2UKGgGaAloD0MIUYcVbvk9XcCUhpRSlGgVS8hoFkdAZ7cjL0SRKnV9lChoBmgJaA9DCBpPBHEe613AlIaUUpRoFUvIaBZHQGiER4IKMNt1fZQoaAZoCWgPQwgNAFXcaBGQwJSGlFKUaBVLyGgWR0BpWXyNGViXdX2UKGgGaAloD0MIh6QWSialX8CUhpRSlGgVS8hoFkdAaiRT2FnIyXV9lChoBmgJaA9DCBiyutVzwF3AlIaUUpRoFUvIaBZHQGsBP4mCyyF1fZQoaAZoCWgPQwiXAtL+h8ZswJSGlFKUaBVLyGgWR0Br2MxoIv8JdX2UKGgGaAloD0MIfNRfrzB3bMCUhpRSlGgVS8hoFkdAbNjVWCEpRXV9lChoBmgJaA9DCFbVy+80eQDAlIaUUpRoFUvIaBZHQG3FetCAtnR1fZQoaAZoCWgPQwgHX5hMFS9fwJSGlFKUaBVLyGgWR0BusQ51eSjhdX2UKGgGaAloD0MI+dhdoKTpbMCUhpRSlGgVS8hoFkdAb45G5tm+TXV9lChoBmgJaA9DCGuDE9Hv8XTAlIaUUpRoFUvIaBZHQHBcW69TP0J1fZQoaAZoCWgPQwggls0ckkJewJSGlFKUaBVLyGgWR0Bw39wIdELIdX2UKGgGaAloD0MI/DkF+dnNXsCUhpRSlGgVS8hoFkdAcWOG7Bfrr3V9lChoBmgJaA9DCBssnKT5hF7AlIaUUpRoFUvIaBZHQHHRdcv/R3N1fZQoaAZoCWgPQwgw1jcwOX1twJSGlFKUaBVLyGgWR0ByOTJ4jbBXdX2UKGgGaAloD0MIa5+Ox4z1bcCUhpRSlGgVS8hoFkdAcqsfkFOfunV9lChoBmgJaA9DCNHrT+JzHV/AlIaUUpRoFUvIaBZHQHMrJ22XsxB1fZQoaAZoCWgPQwhWLekoB/P6v5SGlFKUaBVLyGgWR0BzoS2BreqJdX2UKGgGaAloD0MI1a4JaY3pX8CUhpRSlGgVS8hoFkdAdBWdgOSW7nV9lChoBmgJaA9DCLcJ98q8EV/AlIaUUpRoFUvIaBZHQHR6AMH8jzJ1fZQoaAZoCWgPQwjWcfxQab9dwJSGlFKUaBVLyGgWR0B03FMCcPOIdX2UKGgGaAloD0MIWoP3VbmyXsCUhpRSlGgVS8hoFkdAdULUornTzHV9lChoBmgJaA9DCAPuef40oW7AlIaUUpRoFUvIaBZHQHWp0vboKUp1fZQoaAZoCWgPQwjkv0AQIPFewJSGlFKUaBVLyGgWR0B2DbUlRgqmdX2UKGgGaAloD0MIyQG7mjzaXMCUhpRSlGgVS8hoFkdAdnnYHgP3BnV9lChoBmgJaA9DCKkVpu815F7AlIaUUpRoFUvIaBZHQHbinCCSRr91fZQoaAZoCWgPQwgDRMGMKZxdwJSGlFKUaBVLyGgWR0B3RduYQarFdX2UKGgGaAloD0MIw/S9huDWXMCUhpRSlGgVS8hoFkdAd6lZc9nscHV9lChoBmgJaA9DCDoi36XUM23AlIaUUpRoFUvIaBZHQHgXonF5v991fZQoaAZoCWgPQwj9FTJXBjFfwJSGlFKUaBVLyGgWR0B4jC7e2uxKdX2UKGgGaAloD0MIboWwGksY8L+UhpRSlGgVS8hoFkdAeOlf7aZhKHV9lChoBmgJaA9DCEZ6UbtfvFzAlIaUUpRoFUvIaBZHQHlF1aW5Yo11fZQoaAZoCWgPQwgnol9bP50BwJSGlFKUaBVLyGgWR0B5vrz8P4EfdX2UKGgGaAloD0MIHT1+b9PIXcCUhpRSlGgVS8hoFkdAekjZ3s5XEXV9lChoBmgJaA9DCL6lnC/2nGzAlIaUUpRoFUvIaBZHQHqyw0waisZ1fZQoaAZoCWgPQwhv05/9SLZfwJSGlFKUaBVLyGgWR0B7GhyLhrFgdX2UKGgGaAloD0MIz9ptFxpfbMCUhpRSlGgVS8hoFkdAe4yPvrnkk3V9lChoBmgJaA9DCNhhTPp7afq/lIaUUpRoFUvIaBZHQHwUF4cFQl91fZQoaAZoCWgPQwi2gqYlFj9zwJSGlFKUaBVLyGgWR0B8iEjfNzKcdX2UKGgGaAloD0MIQblt36NqbMCUhpRSlGgVS8hoFkdAfOyYPoV2zXV9lChoBmgJaA9DCLTlXIor4GzAlIaUUpRoFUvIaBZHQH1KbwKBuoB1fZQoaAZoCWgPQwja5Vsf1qRfwJSGlFKUaBVLyGgWR0B9pswPAfuDdX2UKGgGaAloD0MIQZyHE5jO8b+UhpRSlGgVS8hoFkdAfgQLiMo+fXV9lChoBmgJaA9DCO4KfbCMWl/AlIaUUpRoFUvIaBZHQH5hKC17Y051fZQoaAZoCWgPQwibyqKwi9JewJSGlFKUaBVLyGgWR0B+vre54GD+dX2UKGgGaAloD0MI5iDoaFUCXsCUhpRSlGgVS8hoFkdAfxt9XtBv73V9lChoBmgJaA9DCCkjLgANlmzAlIaUUpRoFUvIaBZHQH93WGIsRQJ1fZQoaAZoCWgPQwjaHyi37bhewJSGlFKUaBVLyGgWR0B/1IDEFW4mdX2UKGgGaAloD0MIoOI48GprX8CUhpRSlGgVS8hoFkdAgBiKbrkbP3V9lChoBmgJaA9DCAPpYtNKofO/lIaUUpRoFUvIaBZHQIBMpczImw91fZQoaAZoCWgPQwjja88sCdFcwJSGlFKUaBVLyGgWR0CAe1RPXTVldX2UKGgGaAloD0MIbJOKxtqfX8CUhpRSlGgVS8hoFkdAgKkowmE5AHV9lChoBmgJaA9DCAKCOXr8817AlIaUUpRoFUvIaBZHQIDXlEsrd311fZQoaAZoCWgPQwgYtftVgK/1v5SGlFKUaBVLyGgWR0CBDaSlnAZbdX2UKGgGaAloD0MIPC6qRUTUbMCUhpRSlGgVS8hoFkdAgUFGWldka3V9lChoBmgJaA9DCMqpnWFqZ17AlIaUUpRoFUvIaBZHQIFwMkt29td1fZQoaAZoCWgPQwh2VDVBVP9twJSGlFKUaBVLyGgWR0CBpzT1CgK4dX2UKGgGaAloD0MIC0EOSpg8b8CUhpRSlGgVS8hoFkdAgd/wEZBLPHV9lChoBmgJaA9DCEeNCTGXfF3AlIaUUpRoFUvIaBZHQIIXOqgh8pl1fZQoaAZoCWgPQwjRsu4fC6hewJSGlFKUaBVLyGgWR0CCT3hiLEUCdX2UKGgGaAloD0MIuW+1Tlx1X8CUhpRSlGgVS8hoFkdAgoQvRiPQwHV9lChoBmgJaA9DCEqWk1D66l/AlIaUUpRoFUvIaBZHQIK3FsWO6up1fZQoaAZoCWgPQwgSMSWS6IldwJSGlFKUaBVLyGgWR0CC6VrD63y7dX2UKGgGaAloD0MIfh6jPPMQb8CUhpRSlGgVS8hoFkdAgzE2912aD3V9lChoBmgJaA9DCKMdN/xupm7AlIaUUpRoFUvIaBZHQIN74fEGZ/l1fZQoaAZoCWgPQwhRMGMK1lgGwJSGlFKUaBVLyGgWR0CDtYfZmI0qdX2UKGgGaAloD0MIb6DAO/mkXcCUhpRSlGgVS8hoFkdAg+UYgaFVUHV9lChoBmgJaA9DCF3iyAOR9FzAlIaUUpRoFUvIaBZHQIQUIP07KaJ1fZQoaAZoCWgPQwhkXdxGg8VrwJSGlFKUaBVLyGgWR0CEV65OJtSAdX2UKGgGaAloD0MIV12HakrmXcCUhpRSlGgVS8hoFkdAhJyJL/S6UnV9lChoBmgJaA9DCDCA8KFEGm/AlIaUUpRoFUvIaBZHQITYof0VafV1fZQoaAZoCWgPQwi5cYv5uQELwJSGlFKUaBVLyGgWR0CFEdpM6BAfdX2UKGgGaAloD0MIy2Wjc34pXcCUhpRSlGgVS8hoFkdAhVJAeaKDTXV9lChoBmgJaA9DCEccsoF0dl3AlIaUUpRoFUvIaBZHQIWM8O5J9Rd1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 19900,
|
87 |
+
"buffer_size": 1,
|
88 |
+
"batch_size": 256,
|
89 |
+
"learning_starts": 100,
|
90 |
+
"tau": 0.005,
|
91 |
+
"gamma": 0.99,
|
92 |
+
"gradient_steps": 1,
|
93 |
+
"optimize_memory_usage": false,
|
94 |
+
"replay_buffer_class": {
|
95 |
+
":type:": "<class 'abc.ABCMeta'>",
|
96 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
97 |
+
"__module__": "stable_baselines3.common.buffers",
|
98 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
99 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fb312b5bcb0>",
|
100 |
+
"add": "<function ReplayBuffer.add at 0x7fb312b5bd40>",
|
101 |
+
"sample": "<function ReplayBuffer.sample at 0x7fb312b51440>",
|
102 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fb312b514d0>",
|
103 |
+
"__abstractmethods__": "frozenset()",
|
104 |
+
"_abc_impl": "<_abc_data object at 0x7fb312bbb3f0>"
|
105 |
+
},
|
106 |
+
"replay_buffer_kwargs": {},
|
107 |
+
"train_freq": {
|
108 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
109 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
110 |
+
},
|
111 |
+
"use_sde_at_warmup": false,
|
112 |
+
"target_entropy": -1.0,
|
113 |
+
"ent_coef": "auto",
|
114 |
+
"target_update_interval": 1,
|
115 |
+
"top_quantiles_to_drop_per_net": 2
|
116 |
+
}
|
tqc-Pendulum-v1/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a6e137feba619dae41b557e8d62ce9aee3fd3c8533b414040c5f85af493e077
|
3 |
+
size 1191
|
tqc-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a212e5de577f9b72c58b1b8d0720c99b4e2f68033eda2a3faba93ea915a0626e
|
3 |
+
size 1455685
|
tqc-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ce80cb691e906c9e7770bffead06beda0512716cbcbc9bacdf69bf1b00a3f42
|
3 |
+
size 747
|
tqc-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
|
2 |
+
Python: 3.7.12
|
3 |
+
Stable-Baselines3: 1.5.1a6
|
4 |
+
PyTorch: 1.11.0+cpu
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5e12368757ee160fad707977c2c2a88a24f92b18f13823e17c82d994d2bf071
|
3 |
+
size 4177
|