araffin commited on
Commit
7882b45
1 Parent(s): 0cfe087

Initial Commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -171.32 +/- 96.54
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Pendulum-v1
20
+ type: Pendulum-v1
21
+ ---
22
+
23
+ # **TQC** Agent playing **Pendulum-v1**
24
+ This is a trained model of a **TQC** agent playing **Pendulum-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo tqc --env Pendulum-v1 -orga sb3 -f logs/
41
+ python enjoy.py --algo tqc --env Pendulum-v1 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo tqc --env Pendulum-v1 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo tqc --env Pendulum-v1 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('learning_rate', 0.001),
54
+ ('n_timesteps', 20000),
55
+ ('policy', 'MlpPolicy'),
56
+ ('normalize', False)])
57
+ ```
args.yml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - Pendulum-v1
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 5000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs/
20
+ - - log_interval
21
+ - -1
22
+ - - n_eval_envs
23
+ - 1
24
+ - - n_evaluations
25
+ - null
26
+ - - n_jobs
27
+ - 1
28
+ - - n_startup_trials
29
+ - 10
30
+ - - n_timesteps
31
+ - -1
32
+ - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
+ - - num_threads
37
+ - -1
38
+ - - optimization_log_path
39
+ - null
40
+ - - optimize_hyperparameters
41
+ - false
42
+ - - pruner
43
+ - median
44
+ - - sampler
45
+ - tpe
46
+ - - save_freq
47
+ - -1
48
+ - - save_replay_buffer
49
+ - false
50
+ - - seed
51
+ - 2347514426
52
+ - - storage
53
+ - null
54
+ - - study_name
55
+ - null
56
+ - - tensorboard_log
57
+ - ''
58
+ - - track
59
+ - false
60
+ - - trained_agent
61
+ - ''
62
+ - - truncate_last_trajectory
63
+ - true
64
+ - - uuid
65
+ - false
66
+ - - vec_env
67
+ - dummy
68
+ - - verbose
69
+ - 1
70
+ - - wandb_entity
71
+ - null
72
+ - - wandb_project_name
73
+ - sb3
config.yml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - learning_rate
3
+ - 0.001
4
+ - - n_timesteps
5
+ - 20000
6
+ - - policy
7
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b62acf4a992241ae9af3177aafad9dad123122ca29943b8023f4bb00f579c8d
3
+ size 230244
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -171.31813649999998, "std_reward": 96.53819756951812, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-22T22:35:48.222434"}
tqc-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b393e819b74e7060007fa84c5b8eab3851debb3368591d66478e9d199f6c2be3
3
+ size 3203058
tqc-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a6
tqc-Pendulum-v1/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3667db381eb9632de7c33ec91daa54cb4f534745d0b85aa578541942b0d6feb
3
+ size 542837
tqc-Pendulum-v1/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b62d6b356d627051d90d7f20a6e92a986fb3bf2949f124e4e89f31b21668e9c
3
+ size 1182045
tqc-Pendulum-v1/data ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TQCPolicy.__init__ at 0x7fb312384f80>",
8
+ "_build": "<function TQCPolicy._build at 0x7fb312388050>",
9
+ "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fb3123880e0>",
10
+ "reset_noise": "<function TQCPolicy.reset_noise at 0x7fb312388170>",
11
+ "make_actor": "<function TQCPolicy.make_actor at 0x7fb312388200>",
12
+ "make_critic": "<function TQCPolicy.make_critic at 0x7fb312388290>",
13
+ "forward": "<function TQCPolicy.forward at 0x7fb312388320>",
14
+ "_predict": "<function TQCPolicy._predict at 0x7fb3123883b0>",
15
+ "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fb312388440>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7fb3123e54b0>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "use_sde": false
22
+ },
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 3
29
+ ],
30
+ "low": "[-1. -1. -8.]",
31
+ "high": "[1. 1. 8.]",
32
+ "bounded_below": "[ True True True]",
33
+ "bounded_above": "[ True True True]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 1
42
+ ],
43
+ "low": "[-2.]",
44
+ "high": "[2.]",
45
+ "bounded_below": "[ True]",
46
+ "bounded_above": "[ True]",
47
+ "_np_random": "RandomState(MT19937)"
48
+ },
49
+ "n_envs": 1,
50
+ "num_timesteps": 20000,
51
+ "_total_timesteps": 20000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": 0,
54
+ "action_noise": null,
55
+ "start_time": 1653251033.580683,
56
+ "learning_rate": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
59
+ },
60
+ "tensorboard_log": null,
61
+ "lr_schedule": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
64
+ },
65
+ "_last_obs": null,
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
69
+ },
70
+ "_last_original_obs": {
71
+ ":type:": "<class 'numpy.ndarray'>",
72
+ ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAYefz8/7am9j6C8vZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
73
+ },
74
+ "_episode_num": 100,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9NxCV3KllsCUhpRSlIwBbJRLyIwBdJRHQASh4Uvf0mN1fZQoaAZoCWgPQwgqxvmbUL+QwJSGlFKUaBVLyGgWR0AbKHbh3qzJdX2UKGgGaAloD0MIUyCzs3hNncCUhpRSlGgVS8hoFkdAJ6XyqdYnv3V9lChoBmgJaA9DCIOG/gn+ppbAlIaUUpRoFUvIaBZHQDH5cv/R3Nd1fZQoaAZoCWgPQwjqlEc3MiyXwJSGlFKUaBVLyGgWR0A4OekHlfZ3dX2UKGgGaAloD0MIcFzGTS29mMCUhpRSlGgVS8hoFkdAPjoT4+KTCHV9lChoBmgJaA9DCLeYnxuKmJTAlIaUUpRoFUvIaBZHQEKO/M4cWCV1fZQoaAZoCWgPQwiWCiqq3nyUwJSGlFKUaBVLyGgWR0BGhx4QjD8+dX2UKGgGaAloD0MIlpaRej8Nk8CUhpRSlGgVS8hoFkdASlbk6tDD0nV9lChoBmgJaA9DCAVu3c3zHZLAlIaUUpRoFUvIaBZHQE2/HZsbedl1fZQoaAZoCWgPQwg2eF+Va7yOwJSGlFKUaBVLyGgWR0BQuLH6uW8idX2UKGgGaAloD0MITvIjfmVigMCUhpRSlGgVS8hoFkdAUoLnwG4ZuXV9lChoBmgJaA9DCFbxRuaRRYTAlIaUUpRoFUvIaBZHQFRNzjm0VrR1fZQoaAZoCWgPQwjp0r8kFXFwwJSGlFKUaBVLyGgWR0BWHx+nZTQ3dX2UKGgGaAloD0MI5C8t6hPOYMCUhpRSlGgVS8hoFkdAV63ND+irUHV9lChoBmgJaA9DCNMtO8RvF5XAlIaUUpRoFUvIaBZHQFlPapxWDHx1fZQoaAZoCWgPQwgtsMdEyud4wJSGlFKUaBVLyGgWR0BbhUxREWqMdX2UKGgGaAloD0MIAI49e24AdsCUhpRSlGgVS8hoFkdAXcmpeeFtbnV9lChoBmgJaA9DCLQ+5ZisR2/AlIaUUpRoFUvIaBZHQF/8S8an7551fZQoaAZoCWgPQwgFhxdEJBhgwJSGlFKUaBVLyGgWR0Bg8ilLvkR0dX2UKGgGaAloD0MIwY7/AkFfXsCUhpRSlGgVS8hoFkdAYeeeoUBXCHV9lChoBmgJaA9DCOsZwjHLRF7AlIaUUpRoFUvIaBZHQGLihXr+o991fZQoaAZoCWgPQwhiSbn7HBhewJSGlFKUaBVLyGgWR0Bj72OS4e90dX2UKGgGaAloD0MIineAJy0njcCUhpRSlGgVS8hoFkdAZPwVv/BFeHV9lChoBmgJaA9DCCuHFtnOnlzAlIaUUpRoFUvIaBZHQGX0ui35N491fZQoaAZoCWgPQwg9CtejcH3+v5SGlFKUaBVLyGgWR0Bm5h+F10T2dX2UKGgGaAloD0MIUYcVbvk9XcCUhpRSlGgVS8hoFkdAZ7cjL0SRKnV9lChoBmgJaA9DCBpPBHEe613AlIaUUpRoFUvIaBZHQGiER4IKMNt1fZQoaAZoCWgPQwgNAFXcaBGQwJSGlFKUaBVLyGgWR0BpWXyNGViXdX2UKGgGaAloD0MIh6QWSialX8CUhpRSlGgVS8hoFkdAaiRT2FnIyXV9lChoBmgJaA9DCBiyutVzwF3AlIaUUpRoFUvIaBZHQGsBP4mCyyF1fZQoaAZoCWgPQwiXAtL+h8ZswJSGlFKUaBVLyGgWR0Br2MxoIv8JdX2UKGgGaAloD0MIfNRfrzB3bMCUhpRSlGgVS8hoFkdAbNjVWCEpRXV9lChoBmgJaA9DCFbVy+80eQDAlIaUUpRoFUvIaBZHQG3FetCAtnR1fZQoaAZoCWgPQwgHX5hMFS9fwJSGlFKUaBVLyGgWR0BusQ51eSjhdX2UKGgGaAloD0MI+dhdoKTpbMCUhpRSlGgVS8hoFkdAb45G5tm+TXV9lChoBmgJaA9DCGuDE9Hv8XTAlIaUUpRoFUvIaBZHQHBcW69TP0J1fZQoaAZoCWgPQwggls0ckkJewJSGlFKUaBVLyGgWR0Bw39wIdELIdX2UKGgGaAloD0MI/DkF+dnNXsCUhpRSlGgVS8hoFkdAcWOG7Bfrr3V9lChoBmgJaA9DCBssnKT5hF7AlIaUUpRoFUvIaBZHQHHRdcv/R3N1fZQoaAZoCWgPQwgw1jcwOX1twJSGlFKUaBVLyGgWR0ByOTJ4jbBXdX2UKGgGaAloD0MIa5+Ox4z1bcCUhpRSlGgVS8hoFkdAcqsfkFOfunV9lChoBmgJaA9DCNHrT+JzHV/AlIaUUpRoFUvIaBZHQHMrJ22XsxB1fZQoaAZoCWgPQwhWLekoB/P6v5SGlFKUaBVLyGgWR0BzoS2BreqJdX2UKGgGaAloD0MI1a4JaY3pX8CUhpRSlGgVS8hoFkdAdBWdgOSW7nV9lChoBmgJaA9DCLcJ98q8EV/AlIaUUpRoFUvIaBZHQHR6AMH8jzJ1fZQoaAZoCWgPQwjWcfxQab9dwJSGlFKUaBVLyGgWR0B03FMCcPOIdX2UKGgGaAloD0MIWoP3VbmyXsCUhpRSlGgVS8hoFkdAdULUornTzHV9lChoBmgJaA9DCAPuef40oW7AlIaUUpRoFUvIaBZHQHWp0vboKUp1fZQoaAZoCWgPQwjkv0AQIPFewJSGlFKUaBVLyGgWR0B2DbUlRgqmdX2UKGgGaAloD0MIyQG7mjzaXMCUhpRSlGgVS8hoFkdAdnnYHgP3BnV9lChoBmgJaA9DCKkVpu815F7AlIaUUpRoFUvIaBZHQHbinCCSRr91fZQoaAZoCWgPQwgDRMGMKZxdwJSGlFKUaBVLyGgWR0B3RduYQarFdX2UKGgGaAloD0MIw/S9huDWXMCUhpRSlGgVS8hoFkdAd6lZc9nscHV9lChoBmgJaA9DCDoi36XUM23AlIaUUpRoFUvIaBZHQHgXonF5v991fZQoaAZoCWgPQwj9FTJXBjFfwJSGlFKUaBVLyGgWR0B4jC7e2uxKdX2UKGgGaAloD0MIboWwGksY8L+UhpRSlGgVS8hoFkdAeOlf7aZhKHV9lChoBmgJaA9DCEZ6UbtfvFzAlIaUUpRoFUvIaBZHQHlF1aW5Yo11fZQoaAZoCWgPQwgnol9bP50BwJSGlFKUaBVLyGgWR0B5vrz8P4EfdX2UKGgGaAloD0MIHT1+b9PIXcCUhpRSlGgVS8hoFkdAekjZ3s5XEXV9lChoBmgJaA9DCL6lnC/2nGzAlIaUUpRoFUvIaBZHQHqyw0waisZ1fZQoaAZoCWgPQwhv05/9SLZfwJSGlFKUaBVLyGgWR0B7GhyLhrFgdX2UKGgGaAloD0MIz9ptFxpfbMCUhpRSlGgVS8hoFkdAe4yPvrnkk3V9lChoBmgJaA9DCNhhTPp7afq/lIaUUpRoFUvIaBZHQHwUF4cFQl91fZQoaAZoCWgPQwi2gqYlFj9zwJSGlFKUaBVLyGgWR0B8iEjfNzKcdX2UKGgGaAloD0MIQblt36NqbMCUhpRSlGgVS8hoFkdAfOyYPoV2zXV9lChoBmgJaA9DCLTlXIor4GzAlIaUUpRoFUvIaBZHQH1KbwKBuoB1fZQoaAZoCWgPQwja5Vsf1qRfwJSGlFKUaBVLyGgWR0B9pswPAfuDdX2UKGgGaAloD0MIQZyHE5jO8b+UhpRSlGgVS8hoFkdAfgQLiMo+fXV9lChoBmgJaA9DCO4KfbCMWl/AlIaUUpRoFUvIaBZHQH5hKC17Y051fZQoaAZoCWgPQwibyqKwi9JewJSGlFKUaBVLyGgWR0B+vre54GD+dX2UKGgGaAloD0MI5iDoaFUCXsCUhpRSlGgVS8hoFkdAfxt9XtBv73V9lChoBmgJaA9DCCkjLgANlmzAlIaUUpRoFUvIaBZHQH93WGIsRQJ1fZQoaAZoCWgPQwjaHyi37bhewJSGlFKUaBVLyGgWR0B/1IDEFW4mdX2UKGgGaAloD0MIoOI48GprX8CUhpRSlGgVS8hoFkdAgBiKbrkbP3V9lChoBmgJaA9DCAPpYtNKofO/lIaUUpRoFUvIaBZHQIBMpczImw91fZQoaAZoCWgPQwjja88sCdFcwJSGlFKUaBVLyGgWR0CAe1RPXTVldX2UKGgGaAloD0MIbJOKxtqfX8CUhpRSlGgVS8hoFkdAgKkowmE5AHV9lChoBmgJaA9DCAKCOXr8817AlIaUUpRoFUvIaBZHQIDXlEsrd311fZQoaAZoCWgPQwgYtftVgK/1v5SGlFKUaBVLyGgWR0CBDaSlnAZbdX2UKGgGaAloD0MIPC6qRUTUbMCUhpRSlGgVS8hoFkdAgUFGWldka3V9lChoBmgJaA9DCMqpnWFqZ17AlIaUUpRoFUvIaBZHQIFwMkt29td1fZQoaAZoCWgPQwh2VDVBVP9twJSGlFKUaBVLyGgWR0CBpzT1CgK4dX2UKGgGaAloD0MIC0EOSpg8b8CUhpRSlGgVS8hoFkdAgd/wEZBLPHV9lChoBmgJaA9DCEeNCTGXfF3AlIaUUpRoFUvIaBZHQIIXOqgh8pl1fZQoaAZoCWgPQwjRsu4fC6hewJSGlFKUaBVLyGgWR0CCT3hiLEUCdX2UKGgGaAloD0MIuW+1Tlx1X8CUhpRSlGgVS8hoFkdAgoQvRiPQwHV9lChoBmgJaA9DCEqWk1D66l/AlIaUUpRoFUvIaBZHQIK3FsWO6up1fZQoaAZoCWgPQwgSMSWS6IldwJSGlFKUaBVLyGgWR0CC6VrD63y7dX2UKGgGaAloD0MIfh6jPPMQb8CUhpRSlGgVS8hoFkdAgzE2912aD3V9lChoBmgJaA9DCKMdN/xupm7AlIaUUpRoFUvIaBZHQIN74fEGZ/l1fZQoaAZoCWgPQwhRMGMK1lgGwJSGlFKUaBVLyGgWR0CDtYfZmI0qdX2UKGgGaAloD0MIb6DAO/mkXcCUhpRSlGgVS8hoFkdAg+UYgaFVUHV9lChoBmgJaA9DCF3iyAOR9FzAlIaUUpRoFUvIaBZHQIQUIP07KaJ1fZQoaAZoCWgPQwhkXdxGg8VrwJSGlFKUaBVLyGgWR0CEV65OJtSAdX2UKGgGaAloD0MIV12HakrmXcCUhpRSlGgVS8hoFkdAhJyJL/S6UnV9lChoBmgJaA9DCDCA8KFEGm/AlIaUUpRoFUvIaBZHQITYof0VafV1fZQoaAZoCWgPQwi5cYv5uQELwJSGlFKUaBVLyGgWR0CFEdpM6BAfdX2UKGgGaAloD0MIy2Wjc34pXcCUhpRSlGgVS8hoFkdAhVJAeaKDTXV9lChoBmgJaA9DCEccsoF0dl3AlIaUUpRoFUvIaBZHQIWM8O5J9Rd1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 19900,
87
+ "buffer_size": 1,
88
+ "batch_size": 256,
89
+ "learning_starts": 100,
90
+ "tau": 0.005,
91
+ "gamma": 0.99,
92
+ "gradient_steps": 1,
93
+ "optimize_memory_usage": false,
94
+ "replay_buffer_class": {
95
+ ":type:": "<class 'abc.ABCMeta'>",
96
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
97
+ "__module__": "stable_baselines3.common.buffers",
98
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
99
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fb312b5bcb0>",
100
+ "add": "<function ReplayBuffer.add at 0x7fb312b5bd40>",
101
+ "sample": "<function ReplayBuffer.sample at 0x7fb312b51440>",
102
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fb312b514d0>",
103
+ "__abstractmethods__": "frozenset()",
104
+ "_abc_impl": "<_abc_data object at 0x7fb312bbb3f0>"
105
+ },
106
+ "replay_buffer_kwargs": {},
107
+ "train_freq": {
108
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
109
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
110
+ },
111
+ "use_sde_at_warmup": false,
112
+ "target_entropy": -1.0,
113
+ "ent_coef": "auto",
114
+ "target_update_interval": 1,
115
+ "top_quantiles_to_drop_per_net": 2
116
+ }
tqc-Pendulum-v1/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a6e137feba619dae41b557e8d62ce9aee3fd3c8533b414040c5f85af493e077
3
+ size 1191
tqc-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a212e5de577f9b72c58b1b8d0720c99b4e2f68033eda2a3faba93ea915a0626e
3
+ size 1455685
tqc-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ce80cb691e906c9e7770bffead06beda0512716cbcbc9bacdf69bf1b00a3f42
3
+ size 747
tqc-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.1a6
4
+ PyTorch: 1.11.0+cpu
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5e12368757ee160fad707977c2c2a88a24f92b18f13823e17c82d994d2bf071
3
+ size 4177