araffin commited on
Commit
3d97d02
·
1 Parent(s): 1173513

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 3262.99 +/- 64.99
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **TD3** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **TD3** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo td3 --env AntBulletEnv-v0 -orga sb3 -f logs/
41
+ python enjoy.py --algo td3 --env AntBulletEnv-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo td3 --env AntBulletEnv-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo td3 --env AntBulletEnv-v0 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('buffer_size', 200000),
54
+ ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
55
+ ('gamma', 0.98),
56
+ ('gradient_steps', -1),
57
+ ('learning_rate', 0.001),
58
+ ('learning_starts', 10000),
59
+ ('n_timesteps', 1000000.0),
60
+ ('noise_std', 0.1),
61
+ ('noise_type', 'normal'),
62
+ ('policy', 'MlpPolicy'),
63
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
64
+ ('train_freq', [1, 'episode']),
65
+ ('normalize', False)])
66
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - env
5
+ - AntBulletEnv-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 1635842902
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - buffer_size
3
+ - 200000
4
+ - - env_wrapper
5
+ - sb3_contrib.common.wrappers.TimeFeatureWrapper
6
+ - - gamma
7
+ - 0.98
8
+ - - gradient_steps
9
+ - -1
10
+ - - learning_rate
11
+ - 0.001
12
+ - - learning_starts
13
+ - 10000
14
+ - - n_timesteps
15
+ - 1000000.0
16
+ - - noise_std
17
+ - 0.1
18
+ - - noise_type
19
+ - normal
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[400, 300])
24
+ - - train_freq
25
+ - - 1
26
+ - episode
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc6c487febb5fd9936d836decc5f40ca740acf8d29caacb1ce3acf6869251ebb
3
+ size 1250998
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3262.9855607, "std_reward": 64.9854329720947, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T15:03:59.006968"}
td3-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:984998d301a08654d70cb961c679ebbd16b59e58947f3d703e36e8957305dc31
3
+ size 6543702
td3-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
td3-AntBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:617f2084a040e3c90abe1efef9e3af2fae6fb33d2dee3de3277292e16a3fde26
3
+ size 1080961
td3-AntBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff4bca3ab4737007485a97bfa0b3117c9fae92387df37b2a8f6cfa5cba6e161f
3
+ size 2179229
td3-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7eff49be3170>",
8
+ "_build": "<function TD3Policy._build at 0x7eff49be3200>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7eff49be3290>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7eff49be3320>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7eff49be33b0>",
12
+ "forward": "<function TD3Policy.forward at 0x7eff49be3440>",
13
+ "_predict": "<function TD3Policy._predict at 0x7eff49be34d0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7eff49be3560>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc_data object at 0x7eff49bdf210>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 400,
22
+ 300
23
+ ]
24
+ },
25
+ "observation_space": {
26
+ ":type:": "<class 'gym.spaces.box.Box'>",
27
+ ":serialized:": "gASVmwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSx2FlGgLiUN0AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAAACUdJRijARoaWdolGgRaBNLAIWUaBWHlFKUKEsBSx2FlGgLiUN0AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgRaBNLAIWUaBWHlFKUKEsBSx2FlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSx2FlGgpiUMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLHYWUdWIu",
28
+ "dtype": "float32",
29
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n 0.]",
30
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf 1.]",
31
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False True]",
32
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False True]",
33
+ "_np_random": null,
34
+ "_shape": [
35
+ 29
36
+ ]
37
+ },
38
+ "action_space": {
39
+ ":type:": "<class 'gym.spaces.box.Box'>",
40
+ ":serialized:": "gASVWQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgLiUMgAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UdJRijARoaWdolGgRaBNLAIWUaBWHlFKUKEsBSwiFlGgLiUMgAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgRaBNLAIWUaBWHlFKUKEsBSwiFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAQEBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwiFlGgpiUMIAQEBAQEBAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOYwFc3RhdGWUfZQojANrZXmUaBFoE0sAhZRoFYeUUpQoSwFNcAKFlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwiFlHViLg==",
41
+ "dtype": "float32",
42
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
43
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
44
+ "bounded_below": "[ True True True True True True True True]",
45
+ "bounded_above": "[ True True True True True True True True]",
46
+ "_np_random": "RandomState(MT19937)",
47
+ "_shape": [
48
+ 8
49
+ ]
50
+ },
51
+ "n_envs": 1,
52
+ "num_timesteps": 1000054,
53
+ "_total_timesteps": 1000000,
54
+ "_num_timesteps_at_start": 0,
55
+ "seed": 0,
56
+ "action_noise": {
57
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
58
+ ":serialized:": "gASVdAEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoCYwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowGX3NpZ21hlGgIaAtLAIWUaA2HlFKUKEsBSwiFlGgViUNAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5R0lGJ1Yi4=",
59
+ "_mu": "[0. 0. 0. 0. 0. 0. 0. 0.]",
60
+ "_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]"
61
+ },
62
+ "start_time": 1614621305.74363,
63
+ "learning_rate": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
66
+ },
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
71
+ },
72
+ "_last_obs": null,
73
+ "_last_episode_starts": null,
74
+ "_last_original_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gASV/gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLHYaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUN0cjw+vlHwLT6fR3w/v/J1PwFQED1d0EA8d3H3PP1iT76h00I/5o7jPo7yJr8UaAS/FM7iPQWhWz9j7DQ/bAH1PqCtfz/q0Hk/fF0uP8NTg73mpkm/7DeGvhq5Rz4bWV0+AAAAAAAAgD8AAAAAAACAP28SgzqUdJRiLg=="
77
+ },
78
+ "_episode_num": 1057,
79
+ "use_sde": false,
80
+ "sde_sample_freq": -1,
81
+ "_current_progress_remaining": -5.3999999999998494e-05,
82
+ "ep_info_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKjHY1ivxH6MAWyUTegDjAF0lEdAvnyeX7cfvHV9lChoBkdAqNNUwUQCjmgHTegDaAhHQL6EJfr8iwB1fZQoaAZHQKikBA0Kqn5oB03oA2gIR0C+i6Y0ALiNdX2UKGgGR0CobIR5LRKIaAdN6ANoCEdAvpM1hpg1FnV9lChoBkdAqGHcjcEeQ2gHTegDaAhHQL6apPS2H+J1fZQoaAZHQKk4Hg0CRwJoB03oA2gIR0C+ofvWMCLddX2UKGgGR0Co1a00Nz8xaAdN6ANoCEdAvqlH9tMwlHV9lChoBkdAqIvrRWtEHGgHTegDaAhHQL6wgmCiAUd1fZQoaAZHQKkcGzAvcrRoB03oA2gIR0C+t7p17pmmdX2UKGgGR0Coy1dFnZkDaAdN6ANoCEdAvsxDEit7r3V9lChoBkdAqXhjjYI0ImgHTegDaAhHQL7Tnze40/J1fZQoaAZHQKaF1Prv9cdoB03oA2gIR0C+2xBQFcIJdX2UKGgGR0CojLRradtmaAdN6ANoCEdAvuKXm8ujAXV9lChoBkdAprqEnNPgvWgHTegDaAhHQL7qJkAxSHd1fZQoaAZHQKb7Ny4nWrhoB03oA2gIR0C+8a7l/6O6dX2UKGgGR0Co9j3VLBbfaAdN6ANoCEdAvvkjkjopx3V9lChoBkdAqLbk6xPfsWgHTegDaAhHQL8AgBQvYe11fZQoaAZHQKiRH1mrbQFoB03oA2gIR0C/B+OFcpsodX2UKGgGR0Co6ridBjWkaAdN6ANoCEdAvw9CKaXrt3V9lChoBkdApzsloYekpWgHTegDaAhHQL8j7zKs+3Z1fZQoaAZHQKlFYj4593NoB03oA2gIR0C/K0fl+3H8dX2UKGgGR0CoH7bkwN9ZaAdN6ANoCEdAvzKq8an753V9lChoBkdAqQ8fGp++d2gHTegDaAhHQL86C+g13t91fZQoaAZHQKgmaVDa4+doB03oA2gIR0C/QWh+WnjydX2UKGgGR0CpEHNnXd0raAdN6ANoCEdAv0jIZsKsuHV9lChoBkdApf5c4vN/v2gHTegDaAhHQL9QM6xPfsN1fZQoaAZHQKcVZjVhCt1oB03oA2gIR0C/V5GGh24edX2UKGgGR0CmfjSIP9UCaAdN6ANoCEdAv17sUnG83HV9lChoBkdAp2XfJV81GmgHTegDaAhHQL9mUb5dnkF1fZQoaAZHQKhj3CVrylNoB03oA2gIR0C/e3p2MbWFdX2UKGgGR0CnhZlZowmFaAdN6ANoCEdAv4Lvp1RtQHV9lChoBkdAqWGHw1BMSWgHTegDaAhHQL+KTBt1p0x1fZQoaAZHQKiuY1LrX19oB03oA2gIR0C/kagFX7tRdX2UKGgGR0Co3H8mShalaAdN6ANoCEdAv5j+afBeonV9lChoBkdAqNu8yk9EC2gHTegDaAhHQL+gMsLfDUF1fZQoaAZHQKhD0KiO/+NoB03oA2gIR0C/p2j2OAAidX2UKGgGR0CpGMn5JsfraAdN6ANoCEdAv66c2jwhGHV9lChoBkdAqEeg8jiXIGgHTegDaAhHQL+17cUdq+J1fZQoaAZHQKgoxzuF6AxoB03oA2gIR0C/vWqE384xdX2UKGgGR0Cn237k4m1IaAdN6ANoCEdAv9J2rWAf+3V9lChoBkdAqAPm3KB/Z2gHTegDaAhHQL/Z9K9wm3R1fZQoaAZHQKk+FVENOM5oB03oA2gIR0C/4Xx06o2odX2UKGgGR0ComH3sw+MZaAdN6ANoCEdAv+j/aBZpz3V9lChoBkdAqWtmvQnhKmgHTegDaAhHQL/wULsKLKp1fZQoaAZHQKkHWqaPS2JoB03oA2gIR0C/94YlUp/gdX2UKGgGR0CosRrxI8QqaAdN6ANoCEdAv/67yH2ys3V9lChoBkdAqOKC1PWQOmgHTegDaAhHQMAC/hwuM/B1fZQoaAZHQKkNLdEb5uZoB03oA2gIR0DABqvY150KdX2UKGgGR0CovAtet0V8aAdN6ANoCEdAwApYQ9zOo3V9lChoBkdAqLy7sUqQR2gHTegDaAhHQMAUtChvitJ1fZQoaAZHQKim7HHWBjFoB03oA2gIR0DAGHcYdhiLdX2UKGgGR0CnqEJnYg7paAdN6ANoCEdAwBw7ZEDyOXV9lChoBkdAqMCpzijtX2gHTegDaAhHQMAf9CC8OCp1fZQoaAZHQKilXIq9XcRoB03oA2gIR0DAI6SwpvxZdX2UKGgGR0CpGJjHXEqEaAdN6ANoCEdAwCdTJGvwE3V9lChoBkdAqTfZ93KSxWgHTegDaAhHQMArASvs7dV1fZQoaAZHQKk8L6qsEJVoB03oA2gIR0DALsRhYvFndX2UKGgGR0CpRP1XvH94aAdN6ANoCEdAwDJ3wSamXXV9lChoBkdAqRKDPMSsbWgHTegDaAhHQMA2Je98JD51fZQoaAZHQKk5LQpF1CBoB03oA2gIR0DAQHLYbsF/dX2UKGgGR0CocE/eLvTgaAdN6ANoCEdAwEQiAd4mkXV9lChoBkdAqYzk1uR9w2gHTegDaAhHQMBHypjtoi91fZQoaAZHQKlbjXYlIEtoB03oA2gIR0DAS2YEU0vXdX2UKGgGR0CpTv3I+4b0aAdN6ANoCEdAwE8RQtSQ5nV9lChoBkdAqQdM189fTmgHTegDaAhHQMBSvwSBbwB1fZQoaAZHQKgWCdGy5ZtoB03oA2gIR0DAVng77sOYdX2UKGgGR0CnsbhGYrrgaAdN6ANoCEdAwFo/RaX8fnV9lChoBkdAqF6qIBRyfmgHTegDaAhHQMBd/OxSpBJ1fZQoaAZHQKixw8WbgCRoB03oA2gIR0DAYcIEt/WldX2UKGgGR0CpDXH8TBZZaAdN6ANoCEdAwGwwEMb3oXV9lChoBkdAqRHvZ7HAAWgHTegDaAhHQMBv4BwVCX11fZQoaAZHQKmVQJAMUh5oB03oA2gIR0DAc4HOlfqpdX2UKGgGR0CnshzrNW2gaAdN6ANoCEdAwHcfZIQOF3V9lChoBkdAqPnd4gRsdmgHTegDaAhHQMB6vO7g88t1fZQoaAZHQKj/1U0elsRoB03oA2gIR0DAfll8b70ndX2UKGgGR0Co9sxzRx95aAdN6ANoCEdAwIICoybhFXV9lChoBkdAp/7jQPZqVWgHTegDaAhHQMCFr80DU3J1fZQoaAZHQKh9gVLSNOxoB03oA2gIR0DAiXbzoUzsdX2UKGgGR0CpcqyMcZLqaAdN6ANoCEdAwI08O+7DmHV9lChoBkdAqRIADmr8zmgHTegDaAhHQMCXxmXw9aF1fZQoaAZHQKkH2Bas6q9oB03oA2gIR0DAm4J1PnB+dX2UKGgGR0CpNe5TIeYEaAdN6ANoCEdAwJ8upvP1MHV9lChoBkdAqPw70cwQDmgHTegDaAhHQMCi2B+OOsF1fZQoaAZHQKg4goKlYU5oB03oA2gIR0DApn3ovBacdX2UKGgGR0Co2Atoi9qUaAdN6ANoCEdAwKor+wTufHV9lChoBkdAqNj6reZXuGgHTegDaAhHQMCt2UT+NtJ1fZQoaAZHQKhd+nm7rcFoB03oA2gIR0DAsYfXCj1xdX2UKGgGR0CpD5zqrzXjaAdN6ANoCEdAwLU1hG6PKnV9lChoBkdAqS1TwMH8j2gHTegDaAhHQMC44M3IdU91fZQoaAZHQKlLImGdqcpoB03oA2gIR0DAwzhGWldkdX2UKGgGR0CpW30Q04zaaAdN6ANoCEdAwMbkDr7fpHV9lChoBkdAqG7Jgw482mgHTegDaAhHQMDKlX0wrUd1fZQoaAZHQKjYQAuIyj5oB03oA2gIR0DAzk5mGucMdX2UKGgGR0CobxgN5MURaAdN6ANoCEdAwNIRzr/sFHV9lChoBkdAqO9tndweeWgHTegDaAhHQMDV0y9EkSp1fZQoaAZHQKkN7yAhB7hoB03oA2gIR0DA2ZoOx0MgdX2UKGgGR0CoRgKHfuTiaAdN6ANoCEdAwN1eotL+P3V9lChoBkdAp8jb+JgssmgHTegDaAhHQMDhDF6Z6Ut1fZQoaAZHQKkZf+DOC5FoB03oA2gIR0DA5LvSx7iRdX2UKGgGR0CpJ+Apz90jaAdN6ANoCEdAwO7j95QgtHVlLg=="
85
+ },
86
+ "ep_success_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
89
+ },
90
+ "_n_updates": 990085,
91
+ "buffer_size": 1,
92
+ "batch_size": 100,
93
+ "learning_starts": 10000,
94
+ "tau": 0.005,
95
+ "gamma": 0.98,
96
+ "gradient_steps": -1,
97
+ "optimize_memory_usage": false,
98
+ "replay_buffer_class": {
99
+ ":type:": "<class 'abc.ABCMeta'>",
100
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
101
+ "__module__": "stable_baselines3.common.buffers",
102
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
103
+ "__init__": "<function ReplayBuffer.__init__ at 0x7eff4a060b90>",
104
+ "add": "<function ReplayBuffer.add at 0x7eff4a060c20>",
105
+ "sample": "<function ReplayBuffer.sample at 0x7eff49bc77a0>",
106
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7eff49bc7830>",
107
+ "__abstractmethods__": "frozenset()",
108
+ "_abc_impl": "<_abc_data object at 0x7eff4a0b75d0>"
109
+ },
110
+ "replay_buffer_kwargs": {},
111
+ "train_freq": {
112
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
113
+ ":serialized:": "gASVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
114
+ },
115
+ "use_sde_at_warmup": false,
116
+ "policy_delay": 2,
117
+ "target_noise_clip": 0.5,
118
+ "target_policy_noise": 0.2,
119
+ "_last_dones": {
120
+ ":type:": "<class 'numpy.ndarray'>",
121
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
122
+ },
123
+ "remove_time_limit_termination": false
124
+ }
td3-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f527a04ba95b44469c60984608b3008da3f8e16255fb6abf42b8d15a0c44ff
3
+ size 3262521
td3-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4820cfab2fe19f8a4959308407424cdca6f220b350f34ee319eabbdf4f0d6338
3
+ size 48660