Initial commit
Browse files- .gitattributes +1 -0
- README.md +66 -0
- args.yml +59 -0
- config.yml +26 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- td3-AntBulletEnv-v0.zip +3 -0
- td3-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- td3-AntBulletEnv-v0/actor.optimizer.pth +3 -0
- td3-AntBulletEnv-v0/critic.optimizer.pth +3 -0
- td3-AntBulletEnv-v0/data +124 -0
- td3-AntBulletEnv-v0/policy.pth +3 -0
- td3-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- td3-AntBulletEnv-v0/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TD3
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 3262.99 +/- 64.99
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TD3** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **TD3** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo td3 --env AntBulletEnv-v0 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo td3 --env AntBulletEnv-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo td3 --env AntBulletEnv-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo td3 --env AntBulletEnv-v0 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('buffer_size', 200000),
|
54 |
+
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
|
55 |
+
('gamma', 0.98),
|
56 |
+
('gradient_steps', -1),
|
57 |
+
('learning_rate', 0.001),
|
58 |
+
('learning_starts', 10000),
|
59 |
+
('n_timesteps', 1000000.0),
|
60 |
+
('noise_std', 0.1),
|
61 |
+
('noise_type', 'normal'),
|
62 |
+
('policy', 'MlpPolicy'),
|
63 |
+
('policy_kwargs', 'dict(net_arch=[400, 300])'),
|
64 |
+
('train_freq', [1, 'episode']),
|
65 |
+
('normalize', False)])
|
66 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- td3
|
4 |
+
- - env
|
5 |
+
- AntBulletEnv-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 1635842902
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - buffer_size
|
3 |
+
- 200000
|
4 |
+
- - env_wrapper
|
5 |
+
- sb3_contrib.common.wrappers.TimeFeatureWrapper
|
6 |
+
- - gamma
|
7 |
+
- 0.98
|
8 |
+
- - gradient_steps
|
9 |
+
- -1
|
10 |
+
- - learning_rate
|
11 |
+
- 0.001
|
12 |
+
- - learning_starts
|
13 |
+
- 10000
|
14 |
+
- - n_timesteps
|
15 |
+
- 1000000.0
|
16 |
+
- - noise_std
|
17 |
+
- 0.1
|
18 |
+
- - noise_type
|
19 |
+
- normal
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - policy_kwargs
|
23 |
+
- dict(net_arch=[400, 300])
|
24 |
+
- - train_freq
|
25 |
+
- - 1
|
26 |
+
- episode
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc6c487febb5fd9936d836decc5f40ca740acf8d29caacb1ce3acf6869251ebb
|
3 |
+
size 1250998
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 3262.9855607, "std_reward": 64.9854329720947, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T15:03:59.006968"}
|
td3-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:984998d301a08654d70cb961c679ebbd16b59e58947f3d703e36e8957305dc31
|
3 |
+
size 6543702
|
td3-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
td3-AntBulletEnv-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:617f2084a040e3c90abe1efef9e3af2fae6fb33d2dee3de3277292e16a3fde26
|
3 |
+
size 1080961
|
td3-AntBulletEnv-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff4bca3ab4737007485a97bfa0b3117c9fae92387df37b2a8f6cfa5cba6e161f
|
3 |
+
size 2179229
|
td3-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TD3Policy.__init__ at 0x7eff49be3170>",
|
8 |
+
"_build": "<function TD3Policy._build at 0x7eff49be3200>",
|
9 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7eff49be3290>",
|
10 |
+
"make_actor": "<function TD3Policy.make_actor at 0x7eff49be3320>",
|
11 |
+
"make_critic": "<function TD3Policy.make_critic at 0x7eff49be33b0>",
|
12 |
+
"forward": "<function TD3Policy.forward at 0x7eff49be3440>",
|
13 |
+
"_predict": "<function TD3Policy._predict at 0x7eff49be34d0>",
|
14 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x7eff49be3560>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc_data object at 0x7eff49bdf210>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
400,
|
22 |
+
300
|
23 |
+
]
|
24 |
+
},
|
25 |
+
"observation_space": {
|
26 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
27 |
+
":serialized:": "gASVmwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSx2FlGgLiUN0AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAAACUdJRijARoaWdolGgRaBNLAIWUaBWHlFKUKEsBSx2FlGgLiUN0AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgRaBNLAIWUaBWHlFKUKEsBSx2FlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSx2FlGgpiUMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLHYWUdWIu",
|
28 |
+
"dtype": "float32",
|
29 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n 0.]",
|
30 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf 1.]",
|
31 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False True]",
|
32 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False True]",
|
33 |
+
"_np_random": null,
|
34 |
+
"_shape": [
|
35 |
+
29
|
36 |
+
]
|
37 |
+
},
|
38 |
+
"action_space": {
|
39 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
40 |
+
":serialized:": "gASVWQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgLiUMgAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UdJRijARoaWdolGgRaBNLAIWUaBWHlFKUKEsBSwiFlGgLiUMgAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgRaBNLAIWUaBWHlFKUKEsBSwiFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAQEBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwiFlGgpiUMIAQEBAQEBAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOYwFc3RhdGWUfZQojANrZXmUaBFoE0sAhZRoFYeUUpQoSwFNcAKFlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwiFlHViLg==",
|
41 |
+
"dtype": "float32",
|
42 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
43 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
44 |
+
"bounded_below": "[ True True True True True True True True]",
|
45 |
+
"bounded_above": "[ True True True True True True True True]",
|
46 |
+
"_np_random": "RandomState(MT19937)",
|
47 |
+
"_shape": [
|
48 |
+
8
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"n_envs": 1,
|
52 |
+
"num_timesteps": 1000054,
|
53 |
+
"_total_timesteps": 1000000,
|
54 |
+
"_num_timesteps_at_start": 0,
|
55 |
+
"seed": 0,
|
56 |
+
"action_noise": {
|
57 |
+
":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
|
58 |
+
":serialized:": "gASVdAEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoCYwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowGX3NpZ21hlGgIaAtLAIWUaA2HlFKUKEsBSwiFlGgViUNAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5R0lGJ1Yi4=",
|
59 |
+
"_mu": "[0. 0. 0. 0. 0. 0. 0. 0.]",
|
60 |
+
"_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]"
|
61 |
+
},
|
62 |
+
"start_time": 1614621305.74363,
|
63 |
+
"learning_rate": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
66 |
+
},
|
67 |
+
"tensorboard_log": null,
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
71 |
+
},
|
72 |
+
"_last_obs": null,
|
73 |
+
"_last_episode_starts": null,
|
74 |
+
"_last_original_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gASV/gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLHYaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUN0cjw+vlHwLT6fR3w/v/J1PwFQED1d0EA8d3H3PP1iT76h00I/5o7jPo7yJr8UaAS/FM7iPQWhWz9j7DQ/bAH1PqCtfz/q0Hk/fF0uP8NTg73mpkm/7DeGvhq5Rz4bWV0+AAAAAAAAgD8AAAAAAACAP28SgzqUdJRiLg=="
|
77 |
+
},
|
78 |
+
"_episode_num": 1057,
|
79 |
+
"use_sde": false,
|
80 |
+
"sde_sample_freq": -1,
|
81 |
+
"_current_progress_remaining": -5.3999999999998494e-05,
|
82 |
+
"ep_info_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKjHY1ivxH6MAWyUTegDjAF0lEdAvnyeX7cfvHV9lChoBkdAqNNUwUQCjmgHTegDaAhHQL6EJfr8iwB1fZQoaAZHQKikBA0Kqn5oB03oA2gIR0C+i6Y0ALiNdX2UKGgGR0CobIR5LRKIaAdN6ANoCEdAvpM1hpg1FnV9lChoBkdAqGHcjcEeQ2gHTegDaAhHQL6apPS2H+J1fZQoaAZHQKk4Hg0CRwJoB03oA2gIR0C+ofvWMCLddX2UKGgGR0Co1a00Nz8xaAdN6ANoCEdAvqlH9tMwlHV9lChoBkdAqIvrRWtEHGgHTegDaAhHQL6wgmCiAUd1fZQoaAZHQKkcGzAvcrRoB03oA2gIR0C+t7p17pmmdX2UKGgGR0Coy1dFnZkDaAdN6ANoCEdAvsxDEit7r3V9lChoBkdAqXhjjYI0ImgHTegDaAhHQL7Tnze40/J1fZQoaAZHQKaF1Prv9cdoB03oA2gIR0C+2xBQFcIJdX2UKGgGR0CojLRradtmaAdN6ANoCEdAvuKXm8ujAXV9lChoBkdAprqEnNPgvWgHTegDaAhHQL7qJkAxSHd1fZQoaAZHQKb7Ny4nWrhoB03oA2gIR0C+8a7l/6O6dX2UKGgGR0Co9j3VLBbfaAdN6ANoCEdAvvkjkjopx3V9lChoBkdAqLbk6xPfsWgHTegDaAhHQL8AgBQvYe11fZQoaAZHQKiRH1mrbQFoB03oA2gIR0C/B+OFcpsodX2UKGgGR0Co6ridBjWkaAdN6ANoCEdAvw9CKaXrt3V9lChoBkdApzsloYekpWgHTegDaAhHQL8j7zKs+3Z1fZQoaAZHQKlFYj4593NoB03oA2gIR0C/K0fl+3H8dX2UKGgGR0CoH7bkwN9ZaAdN6ANoCEdAvzKq8an753V9lChoBkdAqQ8fGp++d2gHTegDaAhHQL86C+g13t91fZQoaAZHQKgmaVDa4+doB03oA2gIR0C/QWh+WnjydX2UKGgGR0CpEHNnXd0raAdN6ANoCEdAv0jIZsKsuHV9lChoBkdApf5c4vN/v2gHTegDaAhHQL9QM6xPfsN1fZQoaAZHQKcVZjVhCt1oB03oA2gIR0C/V5GGh24edX2UKGgGR0CmfjSIP9UCaAdN6ANoCEdAv17sUnG83HV9lChoBkdAp2XfJV81GmgHTegDaAhHQL9mUb5dnkF1fZQoaAZHQKhj3CVrylNoB03oA2gIR0C/e3p2MbWFdX2UKGgGR0CnhZlZowmFaAdN6ANoCEdAv4Lvp1RtQHV9lChoBkdAqWGHw1BMSWgHTegDaAhHQL+KTBt1p0x1fZQoaAZHQKiuY1LrX19oB03oA2gIR0C/kagFX7tRdX2UKGgGR0Co3H8mShalaAdN6ANoCEdAv5j+afBeonV9lChoBkdAqNu8yk9EC2gHTegDaAhHQL+gMsLfDUF1fZQoaAZHQKhD0KiO/+NoB03oA2gIR0C/p2j2OAAidX2UKGgGR0CpGMn5JsfraAdN6ANoCEdAv66c2jwhGHV9lChoBkdAqEeg8jiXIGgHTegDaAhHQL+17cUdq+J1fZQoaAZHQKgoxzuF6AxoB03oA2gIR0C/vWqE384xdX2UKGgGR0Cn237k4m1IaAdN6ANoCEdAv9J2rWAf+3V9lChoBkdAqAPm3KB/Z2gHTegDaAhHQL/Z9K9wm3R1fZQoaAZHQKk+FVENOM5oB03oA2gIR0C/4Xx06o2odX2UKGgGR0ComH3sw+MZaAdN6ANoCEdAv+j/aBZpz3V9lChoBkdAqWtmvQnhKmgHTegDaAhHQL/wULsKLKp1fZQoaAZHQKkHWqaPS2JoB03oA2gIR0C/94YlUp/gdX2UKGgGR0CosRrxI8QqaAdN6ANoCEdAv/67yH2ys3V9lChoBkdAqOKC1PWQOmgHTegDaAhHQMAC/hwuM/B1fZQoaAZHQKkNLdEb5uZoB03oA2gIR0DABqvY150KdX2UKGgGR0CovAtet0V8aAdN6ANoCEdAwApYQ9zOo3V9lChoBkdAqLy7sUqQR2gHTegDaAhHQMAUtChvitJ1fZQoaAZHQKim7HHWBjFoB03oA2gIR0DAGHcYdhiLdX2UKGgGR0CnqEJnYg7paAdN6ANoCEdAwBw7ZEDyOXV9lChoBkdAqMCpzijtX2gHTegDaAhHQMAf9CC8OCp1fZQoaAZHQKilXIq9XcRoB03oA2gIR0DAI6SwpvxZdX2UKGgGR0CpGJjHXEqEaAdN6ANoCEdAwCdTJGvwE3V9lChoBkdAqTfZ93KSxWgHTegDaAhHQMArASvs7dV1fZQoaAZHQKk8L6qsEJVoB03oA2gIR0DALsRhYvFndX2UKGgGR0CpRP1XvH94aAdN6ANoCEdAwDJ3wSamXXV9lChoBkdAqRKDPMSsbWgHTegDaAhHQMA2Je98JD51fZQoaAZHQKk5LQpF1CBoB03oA2gIR0DAQHLYbsF/dX2UKGgGR0CocE/eLvTgaAdN6ANoCEdAwEQiAd4mkXV9lChoBkdAqYzk1uR9w2gHTegDaAhHQMBHypjtoi91fZQoaAZHQKlbjXYlIEtoB03oA2gIR0DAS2YEU0vXdX2UKGgGR0CpTv3I+4b0aAdN6ANoCEdAwE8RQtSQ5nV9lChoBkdAqQdM189fTmgHTegDaAhHQMBSvwSBbwB1fZQoaAZHQKgWCdGy5ZtoB03oA2gIR0DAVng77sOYdX2UKGgGR0CnsbhGYrrgaAdN6ANoCEdAwFo/RaX8fnV9lChoBkdAqF6qIBRyfmgHTegDaAhHQMBd/OxSpBJ1fZQoaAZHQKixw8WbgCRoB03oA2gIR0DAYcIEt/WldX2UKGgGR0CpDXH8TBZZaAdN6ANoCEdAwGwwEMb3oXV9lChoBkdAqRHvZ7HAAWgHTegDaAhHQMBv4BwVCX11fZQoaAZHQKmVQJAMUh5oB03oA2gIR0DAc4HOlfqpdX2UKGgGR0CnshzrNW2gaAdN6ANoCEdAwHcfZIQOF3V9lChoBkdAqPnd4gRsdmgHTegDaAhHQMB6vO7g88t1fZQoaAZHQKj/1U0elsRoB03oA2gIR0DAfll8b70ndX2UKGgGR0Co9sxzRx95aAdN6ANoCEdAwIICoybhFXV9lChoBkdAp/7jQPZqVWgHTegDaAhHQMCFr80DU3J1fZQoaAZHQKh9gVLSNOxoB03oA2gIR0DAiXbzoUzsdX2UKGgGR0CpcqyMcZLqaAdN6ANoCEdAwI08O+7DmHV9lChoBkdAqRIADmr8zmgHTegDaAhHQMCXxmXw9aF1fZQoaAZHQKkH2Bas6q9oB03oA2gIR0DAm4J1PnB+dX2UKGgGR0CpNe5TIeYEaAdN6ANoCEdAwJ8upvP1MHV9lChoBkdAqPw70cwQDmgHTegDaAhHQMCi2B+OOsF1fZQoaAZHQKg4goKlYU5oB03oA2gIR0DApn3ovBacdX2UKGgGR0Co2Atoi9qUaAdN6ANoCEdAwKor+wTufHV9lChoBkdAqNj6reZXuGgHTegDaAhHQMCt2UT+NtJ1fZQoaAZHQKhd+nm7rcFoB03oA2gIR0DAsYfXCj1xdX2UKGgGR0CpD5zqrzXjaAdN6ANoCEdAwLU1hG6PKnV9lChoBkdAqS1TwMH8j2gHTegDaAhHQMC44M3IdU91fZQoaAZHQKlLImGdqcpoB03oA2gIR0DAwzhGWldkdX2UKGgGR0CpW30Q04zaaAdN6ANoCEdAwMbkDr7fpHV9lChoBkdAqG7Jgw482mgHTegDaAhHQMDKlX0wrUd1fZQoaAZHQKjYQAuIyj5oB03oA2gIR0DAzk5mGucMdX2UKGgGR0CobxgN5MURaAdN6ANoCEdAwNIRzr/sFHV9lChoBkdAqO9tndweeWgHTegDaAhHQMDV0y9EkSp1fZQoaAZHQKkN7yAhB7hoB03oA2gIR0DA2ZoOx0MgdX2UKGgGR0CoRgKHfuTiaAdN6ANoCEdAwN1eotL+P3V9lChoBkdAp8jb+JgssmgHTegDaAhHQMDhDF6Z6Ut1fZQoaAZHQKkZf+DOC5FoB03oA2gIR0DA5LvSx7iRdX2UKGgGR0CpJ+Apz90jaAdN6ANoCEdAwO7j95QgtHVlLg=="
|
85 |
+
},
|
86 |
+
"ep_success_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
89 |
+
},
|
90 |
+
"_n_updates": 990085,
|
91 |
+
"buffer_size": 1,
|
92 |
+
"batch_size": 100,
|
93 |
+
"learning_starts": 10000,
|
94 |
+
"tau": 0.005,
|
95 |
+
"gamma": 0.98,
|
96 |
+
"gradient_steps": -1,
|
97 |
+
"optimize_memory_usage": false,
|
98 |
+
"replay_buffer_class": {
|
99 |
+
":type:": "<class 'abc.ABCMeta'>",
|
100 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
101 |
+
"__module__": "stable_baselines3.common.buffers",
|
102 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
103 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7eff4a060b90>",
|
104 |
+
"add": "<function ReplayBuffer.add at 0x7eff4a060c20>",
|
105 |
+
"sample": "<function ReplayBuffer.sample at 0x7eff49bc77a0>",
|
106 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7eff49bc7830>",
|
107 |
+
"__abstractmethods__": "frozenset()",
|
108 |
+
"_abc_impl": "<_abc_data object at 0x7eff4a0b75d0>"
|
109 |
+
},
|
110 |
+
"replay_buffer_kwargs": {},
|
111 |
+
"train_freq": {
|
112 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
113 |
+
":serialized:": "gASVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
|
114 |
+
},
|
115 |
+
"use_sde_at_warmup": false,
|
116 |
+
"policy_delay": 2,
|
117 |
+
"target_noise_clip": 0.5,
|
118 |
+
"target_policy_noise": 0.2,
|
119 |
+
"_last_dones": {
|
120 |
+
":type:": "<class 'numpy.ndarray'>",
|
121 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
122 |
+
},
|
123 |
+
"remove_time_limit_termination": false
|
124 |
+
}
|
td3-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32f527a04ba95b44469c60984608b3008da3f8e16255fb6abf42b8d15a0c44ff
|
3 |
+
size 3262521
|
td3-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
td3-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4820cfab2fe19f8a4959308407424cdca6f220b350f34ee319eabbdf4f0d6338
|
3 |
+
size 48660
|