araffin commited on
Commit
e07c497
·
verified ·
1 Parent(s): 662b74b

Initial Commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -183.06 +/- 103.48
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
@@ -50,13 +50,8 @@ python -m utils.push_to_hub --algo sac --env Pendulum-v1 -f logs/ -orga sb3
50
 
51
  ## Hyperparameters
52
  ```python
53
- OrderedDict([('gradient_steps', -1),
54
- ('learning_rate', 0.001),
55
- ('n_episodes_rollout', 1),
56
  ('n_timesteps', 20000),
57
  ('policy', 'MlpPolicy'),
58
- ('policy_kwargs', 'dict(log_std_init=-2, net_arch=[64, 64])'),
59
- ('train_freq', -1),
60
- ('use_sde', True),
61
  ('normalize', False)])
62
  ```
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: -176.33 +/- 101.55
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
50
 
51
  ## Hyperparameters
52
  ```python
53
+ OrderedDict([('learning_rate', 0.001),
 
 
54
  ('n_timesteps', 20000),
55
  ('policy', 'MlpPolicy'),
 
 
 
56
  ('normalize', False)])
57
  ```
args.yml CHANGED
@@ -1,24 +1,28 @@
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - sac
 
 
4
  - - env
5
- - Pendulum-v0
6
  - - env_kwargs
7
  - null
8
  - - eval_episodes
9
  - 5
10
  - - eval_freq
11
- - 10000
12
  - - gym_packages
13
  - []
14
  - - hyperparams
15
  - null
16
  - - log_folder
17
- - rl-trained-agents/
18
  - - log_interval
19
  - -1
 
 
20
  - - n_evaluations
21
- - 20
22
  - - n_jobs
23
  - 1
24
  - - n_startup_trials
@@ -26,9 +30,13 @@
26
  - - n_timesteps
27
  - -1
28
  - - n_trials
29
- - 10
 
 
30
  - - num_threads
31
- - 2
 
 
32
  - - optimize_hyperparameters
33
  - false
34
  - - pruner
@@ -40,16 +48,26 @@
40
  - - save_replay_buffer
41
  - false
42
  - - seed
43
- - 1228490524
44
  - - storage
45
  - null
46
  - - study_name
47
  - null
48
  - - tensorboard_log
49
  - ''
 
 
50
  - - trained_agent
51
  - ''
 
 
52
  - - uuid
53
  - false
 
 
54
  - - verbose
55
  - 1
 
 
 
 
 
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - sac
4
+ - - device
5
+ - auto
6
  - - env
7
+ - Pendulum-v1
8
  - - env_kwargs
9
  - null
10
  - - eval_episodes
11
  - 5
12
  - - eval_freq
13
+ - 25000
14
  - - gym_packages
15
  - []
16
  - - hyperparams
17
  - null
18
  - - log_folder
19
+ - logs/
20
  - - log_interval
21
  - -1
22
+ - - n_eval_envs
23
+ - 1
24
  - - n_evaluations
25
+ - null
26
  - - n_jobs
27
  - 1
28
  - - n_startup_trials
 
30
  - - n_timesteps
31
  - -1
32
  - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
  - - num_threads
37
+ - -1
38
+ - - optimization_log_path
39
+ - null
40
  - - optimize_hyperparameters
41
  - false
42
  - - pruner
 
48
  - - save_replay_buffer
49
  - false
50
  - - seed
51
+ - 561540835
52
  - - storage
53
  - null
54
  - - study_name
55
  - null
56
  - - tensorboard_log
57
  - ''
58
+ - - track
59
+ - false
60
  - - trained_agent
61
  - ''
62
+ - - truncate_last_trajectory
63
+ - true
64
  - - uuid
65
  - false
66
+ - - vec_env
67
+ - dummy
68
  - - verbose
69
  - 1
70
+ - - wandb_entity
71
+ - null
72
+ - - wandb_project_name
73
+ - sb3
config.yml CHANGED
@@ -1,17 +1,7 @@
1
  !!python/object/apply:collections.OrderedDict
2
- - - - gradient_steps
3
- - -1
4
- - - learning_rate
5
  - 0.001
6
- - - n_episodes_rollout
7
- - 1
8
  - - n_timesteps
9
  - 20000
10
  - - policy
11
  - MlpPolicy
12
- - - policy_kwargs
13
- - dict(log_std_init=-2, net_arch=[64, 64])
14
- - - train_freq
15
- - -1
16
- - - use_sde
17
- - true
 
1
  !!python/object/apply:collections.OrderedDict
2
+ - - - learning_rate
 
 
3
  - 0.001
 
 
4
  - - n_timesteps
5
  - 20000
6
  - - policy
7
  - MlpPolicy
 
 
 
 
 
 
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d1175d6d23707ecec29c40531ff02306ddf54c6ad13dc39569396db0602d001b
3
- size 163499
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9459b5b8d9aef043e3253027a511d82e40803247f38c1033492925045b67a966
3
+ size 195933
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -183.05522760000002, "std_reward": 103.48458808056235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-22T21:55:31.844628"}
 
1
+ {"mean_reward": -176.32888, "std_reward": 101.54794864862134, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-22T22:23:07.885400"}
sac-Pendulum-v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0dbc7ac7053c8c7174881d3209a02134ea3f1670f77510e8bb24b85439fe8b00
3
- size 245829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2db35a1adf90a69633940e71bad1f481edc75208342d9fa18509f418fadaa51c
3
+ size 3005853
sac-Pendulum-v1/actor.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:92eff6d1b7e877d1fd7c9a1c23eba6fbcb3ed510f28c56f06a372f41f270afff
3
- size 40059
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cddb9ae9fe6a55c343cc452511559ee5c87394a3febfa996ae5234cd6d4650b
3
+ size 542837
sac-Pendulum-v1/critic.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:68e34a81bc1ffe8c1a85907f516a68997597fc273a2834030b5c3761f5f46a2b
3
- size 78877
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:017ac97f65c5e7ce0133454a8fc1cbf9addecb4ac180d21939f0e1b8fd38e875
3
+ size 1083485
sac-Pendulum-v1/data CHANGED
@@ -4,51 +4,46 @@
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.sac.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
- "__init__": "<function SACPolicy.__init__ at 0x7f1c154d9b00>",
8
- "_build": "<function SACPolicy._build at 0x7f1c154d9b90>",
9
- "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f1c154d9c20>",
10
- "reset_noise": "<function SACPolicy.reset_noise at 0x7f1c154d9cb0>",
11
- "make_actor": "<function SACPolicy.make_actor at 0x7f1c154d9d40>",
12
- "make_critic": "<function SACPolicy.make_critic at 0x7f1c154d9dd0>",
13
- "forward": "<function SACPolicy.forward at 0x7f1c154d9e60>",
14
- "_predict": "<function SACPolicy._predict at 0x7f1c154d9ef0>",
15
- "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f1c154d9f80>",
16
  "__abstractmethods__": "frozenset()",
17
- "_abc_impl": "<_abc_data object at 0x7f1c154c58d0>"
18
  },
19
  "verbose": 1,
20
  "policy_kwargs": {
21
- "log_std_init": -2,
22
- "net_arch": [
23
- 64,
24
- 64
25
- ],
26
- "use_sde": true
27
  },
28
  "observation_space": {
29
  ":type:": "<class 'gym.spaces.box.Box'>",
30
- ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAgL8AAIC/AAAAwZRoCksDhZSMAUOUdJRSlIwEaGlnaJRoECiWDAAAAAAAAAAAAIA/AACAPwAAAEGUaApLA4WUaBN0lFKUjA1ib3VuZGVkX2JlbG93lGgQKJYDAAAAAAAAAAEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgfSwOFlGgTdJRSlIwGX3NoYXBllEsDhZSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoECiWwAkAAAAAAAAAAACAkZjUxvkmFlGRFZt/lNEXiDqB8fbl61sOdWhaV0XABcnQyvfNbnqureWOYi5Rxa3DIcjYA8fS72oMAxYZp9vvqDFAScGI038YNvH0ATdbYzO4jnpyKhPCFSxHK+790W4VK4RTTqQq8Rs3hweZzfyTkIXquZgZ8/JZcyNeFcKphw6lQ+zK9iy1S7LMKimQRd5MbirH5bOdcvw9bZmW7v+4tnhNR+9wQ3WQthE8zqsrxNG93OD+Z5H70k6QxksLbsnjOUsR6P0A5edADMUAaqGkQJtGv74oJEeMdX/og7gDk9D3Wip2Tv5CYiGx0UtyTGGVS5RG8oDLDEFpx2t094ePzZjvfyUXwGXbe8i3rJfB2QoQPR3u5nNHdexw4sPZs5ZTTmgal/ccAFf3NgnACTwAaYDM/+YUe8J3tNgvREV4EUHlFKXonOvWVAWPGhBoQ4KAcAoVeS5thynMibQAM8qNmxYmCOmdN/1lvcG7UF6WxXtxqwmp2NXAgNJcdj8lShC+6f1OzvKBNlsDRwCW8pIog79heZgstJLa9MBSyTWc/sHm2R3Ma2+37J18vsR/fe5rAKqvOtOY4d95QNBopLQJqrWIW0NTo94tzw9cTmWyLldDvrC0pWkHuixqEYGsLZZgSEhJHhkbWi/wNDVC6qeKuf8ARB1oc29+4O4UQUkMM79YU/YQXLW7ov+vxhtFkQX4vN/5OT4j/FpBcsWFxMdo3eiFqSYQAZ2caY1dept5JC8DU7Zbnu1ZXR0WXU9OQjylGX0vG1qYJLiaaAf+fOaCjfn6Vp9dgLKTDHfTLWo5aPa/4Ki7g/us2SmHgy0aNHVpWvdSxbdtFzpS32nrCnMvNKDc+URzoWsy03PpFVesZc4zZdSR5dfwlO2M55t3YDCfTq6NH7KgzSeVruS/50xUOqzevfk7G69CNeeD3DsdW8YqQEi//XS0vatw5qLejJ+1DTNOdNXAiEtWZiuMLjFDYc9uUcS6BXobAesYbYitB7H/dqHhAZJdYIHAdeGlk3iWB99H0UmHnkXXV1fa6c99iklfTNtrBbvGmbluHIhSU9ZX6yOyBdq4Kz9oJcacg25c0CovqHQKOAdsi6d9tL3PRtDZpcs/DADUO7PJT4p0XBhVwPpEv4kpYx7TTk27zHkDF55rHHmkCzz69Pm7FArYtOg3ftW1dnGtKMY4pK3k8syJ1gWVdEdnKKg5N3aY6pUdDLfKsfpgSR08sme70uxc0+OqFZusqkAO62588ytvBTZqIM9fBNdnxJlH1X0DzwXeJZ+Md2P1u9LUYDdzfiEKMvm5MEov2wGnFczcorvNnRa92dSz/pXkCWpivElp/Rj9yU5Zlpk1XBShy4O5KoubTp8Jrynm/X2LoI4ABi0KgQCC2z5oEW+eRM6OGHBDyYGEKUPFj1XqJohya8j05KD4BPRWi6foGZ4Hm5aoqLMhktSu9EFA+puTdZVwxhf4Y4VYyt3o82Yy6s3INbmQHbRQV0KO7sxoyoBfTawPn5mDvHjnc11IXSCak8Drqcnvj1mC/JJyKJCdAau0AyjMAFw3f5hJ8mz5torTM3eq7O1XQDqeM8tv5vNc0bZ9qvdyo+SyJYxRWXf6CeC7Q/CJ38chYYHovxFn93R3ujDWG1V2I3cLJf6/yS1g5JwgtH7qY8QDs57T2X/MKufFrA+CcD8h4p5wZQvCpFe+0+0tNM16FtmdPVwxzW836BTs7Fl6U80LYeGE8o7FY223DC+t/zES5ZyZWSuLpz/vRB6DuwgSQ3tK72I4y2WFm9XPUvVIPUK8qAozVDrNao8+awOK6dKwj8cIIZUE4B/4bspfafPioiSQqQEenpAbtPKpDD2hjw1LaVPzw6CW1h3oLPSyf9HqAY4w2TpXvCdgO69BJtopMQEHvt6eUf7SfnEQ8RuuQuSr/zbZrzmmWRP+6uS6NDKrfZGr5bUbEV/iFOZSy046Rume9NzqnqoOPuCOd4GHa3fkF6R/hpFfJLLzYfaxvUwXdPuKCI/ISRV+fOpMqqgpci5OIiZdaO1HDjrAW++DByBVtpLmb2nMYJWCm6VP0gxfeRcTowI9yY3vPOW5fqCezRE7QtMmudS896/K2DfDmYuN3EUPlrC/AYmVgPGLilgjz71zLAqIXJWcMvvf+qVP2w5/5kVh/Fw3Z39kYVq8TD7H1heiafLv1aOzEULfWDzLQzD4c0MMc/YUuh8zuue6SWevpJZiCzSiBCnfXrMK2T8oDhbtW2AgNopLak6rkMIE8ac3i6kiskqjdAFukDi87/6e3O3Aop+MaeIggbQpZaMJSrC9kcUn9KaPza8ItFHgAjuwG5Q2/M9DjVXy/jx+LD4cRy4VDw8nN4SUxMSeaL2T4hPp/NVoIrohUDgKbHYRS05dlmRFDZ/xFmM2GtKh6dt7N/cxo7Pr/63U2gQ2H0CCNQPwQAiVUz3T6sL2MVv0MOEIfDacro1F0MVqypoN01SZ3gXSSCeda0nY4z1ZTlh/T0vuFifjJB8HgffuKmJ4fDArhxg4Aw+7wZRnNPfC2L6IFUN7lAzUTeykdzA8h6CL3XvpdhYYGiyz6S2uafFy/S3xUQ/X5pNWysRZ+8ecIoMZwAEFxJ5swVBljwJIaNLUBSzLaBpCnhx3S5TDD4X3j1ZosKDuf+bpcIMigAumR1oMKECJtM/I5n7jNd8TGvPtigljdCj/MMP0KkMLBAZnyCZ488kIUFV8xH4+fnZEqVJ4NpIeYK+g56qx6WVE0qgule7unIcX5fyNesv0bjK/bLZjOVbXXaa2/PYqB9b+y0O6ABAu1HHWHMNtoNfeeAmwEC2vPMt/uZkvOMlveYy9zf2dXTiZtjiSpzZ8bg7Mh5VL8VSubDezyTWydGUElPOPfTQ84GKGRYWIkRjYOzmhyfyYMLITiq75ZHhQQEVD2SSjlqoEyIurOcqospLqHy8nTkkYnj8U9IhREjeJIX5rDVHs2XBW3PVHzE2bsyEtlaUfK2wJ3XjQGyv3ITBvTU2iI0WWNrJUxrOEfGiqL6JAt6SuxIELEtXdIXq2d45di5QjjIqJhwHfkA71qRTRa47xMmnOy0/lnadSRompN6jWqAdgTs9LjvkeQPSx69RDXYQtZJfNNX4uX315EhG/8QGcbmRg3PadfgSCCib8YjzrYqxAFCNve/49GhdqW7FcKXxaVB310ydlcmNBTKckgPAMFShbeeOEP25pMSws7xuMIFEgur4WDtd4fITsVRsYwPxywoWd8bczCIu/4dYW9T6KxDeCjTsDrwVWaEIxr92ujchxMrp6Hp7PV2OyqBOveL+T5DZJUxnvX169VneUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoE3SUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
31
  "dtype": "float32",
 
 
 
32
  "low": "[-1. -1. -8.]",
33
  "high": "[1. 1. 8.]",
34
  "bounded_below": "[ True True True]",
35
  "bounded_above": "[ True True True]",
36
- "_shape": [
37
- 3
38
- ],
39
- "_np_random": "RandomState(MT19937)"
40
  },
41
  "action_space": {
42
  ":type:": "<class 'gym.spaces.box.Box'>",
43
- ":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAMCUaApLAYWUjAFDlHSUUpSMBGhpZ2iUaBAolgQAAAAAAAAAAAAAQJRoCksBhZRoE3SUUpSMDWJvdW5kZWRfYmVsb3eUaBAolgEAAAAAAAAAAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgEAAAAAAAAAAZRoH0sBhZRoE3SUUpSMBl9zaGFwZZRLAYWUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBAolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBN0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
44
  "dtype": "float32",
 
 
 
45
  "low": "[-2.]",
46
  "high": "[2.]",
47
  "bounded_below": "[ True]",
48
  "bounded_above": "[ True]",
49
- "_shape": [
50
- 1
51
- ],
52
  "_np_random": "RandomState(MT19937)"
53
  },
54
  "n_envs": 1,
@@ -57,62 +52,64 @@
57
  "_num_timesteps_at_start": 0,
58
  "seed": 0,
59
  "action_noise": null,
60
- "start_time": 1594906729.0364032,
61
  "learning_rate": {
62
  ":type:": "<class 'function'>",
63
- ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLfUMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
64
  },
65
  "tensorboard_log": null,
66
  "lr_schedule": {
67
  ":type:": "<class 'function'>",
68
- ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLfUMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
69
  },
70
  "_last_obs": null,
71
- "_last_episode_starts": null,
 
 
 
72
  "_last_original_obs": {
73
  ":type:": "<class 'numpy.ndarray'>",
74
- ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAOLvfD/u7R0+uYSgtZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
75
  },
76
  "_episode_num": 100,
77
- "use_sde": true,
78
  "sde_sample_freq": -1,
79
  "_current_progress_remaining": 0.0,
80
  "ep_info_buffer": {
81
  ":type:": "<class 'collections.deque'>",
82
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8pnsnzdPkcCUhpRSlIwBbJRLyIwBdJRHP76vJRwZOzp1fZQoaAZoCWgPQwh6ceKrnW2VwJSGlFKUaBVLyGgWRz/4VIqbz9S/dX2UKGgGaAloD0MIIJxPHXucmcCUhpRSlGgVS8hoFkdAB31Tzd1uBXV9lChoBmgJaA9DCCNpN/rIWpfAlIaUUpRoFUvIaBZHQBGLU5MlC1J1fZQoaAZoCWgPQwg1tteCbimSwJSGlFKUaBVLyGgWR0AWrKeTV2A5dX2UKGgGaAloD0MInKVkOVlzlcCUhpRSlGgVS8hoFkdAHDCswL3K0XV9lChoBmgJaA9DCJCIKZEknZXAlIaUUpRoFUvIaBZHQCJtu5z5oGp1fZQoaAZoCWgPQwg1lrA2RiibwJSGlFKUaBVLyGgWR0Ampc1wYLssdX2UKGgGaAloD0MIjIF1HF+njcCUhpRSlGgVS8hoFkdAKwGQr+YMOXV9lChoBmgJaA9DCJ7RViVBE5jAlIaUUpRoFUvIaBZHQC8fm/336AR1fZQoaAZoCWgPQwhJ2/gTFWWJwJSGlFKUaBVLyGgWR0Axr0VJtix3dX2UKGgGaAloD0MIjNmSVdGji8CUhpRSlGgVS8hoFkdAM9xK+SKWLXV9lChoBmgJaA9DCCy7YHBtuofAlIaUUpRoFUvIaBZHQDYZIMBp5/t1fZQoaAZoCWgPQwjUmBBz6TKQwJSGlFKUaBVLyGgWR0A4CAR02cawdX2UKGgGaAloD0MI9+rjoe/1f8CUhpRSlGgVS8hoFkdAOe25tm+TNnV9lChoBmgJaA9DCJI/GHiu/4rAlIaUUpRoFUvIaBZHQDvU0TDfm9x1fZQoaAZoCWgPQwjM0k7NheyFwJSGlFKUaBVLyGgWR0A9rZEDyOJddX2UKGgGaAloD0MItDwP7m5khMCUhpRSlGgVS8hoFkdAP3+8Cgbp/3V9lChoBmgJaA9DCP0tAfgn0YLAlIaUUpRoFUvIaBZHQECvboKUmlZ1fZQoaAZoCWgPQwhsPq4N9QmFwJSGlFKUaBVLyGgWR0BBnypzcRDkdX2UKGgGaAloD0MIV89J7xuAcMCUhpRSlGgVS8hoFkdAQpgEKVpsXXV9lChoBmgJaA9DCC8zbJQ1X3DAlIaUUpRoFUvIaBZHQEOIZEUj9n91fZQoaAZoCWgPQwgejNgngMIMwJSGlFKUaBVLyGgWR0BEgXcYZVGTdX2UKGgGaAloD0MIqruyC4Z3f8CUhpRSlGgVS8hoFkdARXpywOe8PHV9lChoBmgJaA9DCEz75v6qYH7AlIaUUpRoFUvIaBZHQEZwGtZFG5N1fZQoaAZoCWgPQwjq0Ol5t2xvwJSGlFKUaBVLyGgWR0BHZc63iJfqdX2UKGgGaAloD0MIJEVkWMXBYMCUhpRSlGgVS8hoFkdASFm5lOGj9HV9lChoBmgJaA9DCN4BnrTwfmDAlIaUUpRoFUvIaBZHQElSd+XqqwR1fZQoaAZoCWgPQwhKKH0hZGduwJSGlFKUaBVLyGgWR0BKSwwTM7lrdX2UKGgGaAloD0MIi4hi8oZpYMCUhpRSlGgVS8hoFkdAS0Ehouf29XV9lChoBmgJaA9DCDblCu9yJl3AlIaUUpRoFUvIaBZHQEw4Gs3hn8N1fZQoaAZoCWgPQwjrO78oQT8kwJSGlFKUaBVLyGgWR0BNLpJXhfjTdX2UKGgGaAloD0MIF/IIbiRsYMCUhpRSlGgVS8hoFkdATjrm6oVEeHV9lChoBmgJaA9DCOF86lglAXDAlIaUUpRoFUvIaBZHQE9f2U0Nz8x1fZQoaAZoCWgPQwhl3qrrUERgwJSGlFKUaBVLyGgWR0BQWHaJyhi9dX2UKGgGaAloD0MIRl1r75MWcMCUhpRSlGgVS8hoFkdAUNePyTY/V3V9lChoBmgJaA9DCElnYORl723AlIaUUpRoFUvIaBZHQFFk/0NBnjB1fZQoaAZoCWgPQwimQ6fnXfxrwJSGlFKUaBVLyGgWR0BSBFvAGjbjdX2UKGgGaAloD0MI/12fOWtFYMCUhpRSlGgVS8hoFkdAUqxt52QnyHV9lChoBmgJaA9DCKuSyD7In3XAlIaUUpRoFUvIaBZHQFNIdCVrylN1fZQoaAZoCWgPQwisxacAmKlwwJSGlFKUaBVLyGgWR0BT1KJl8PWhdX2UKGgGaAloD0MI/BwfLc46YMCUhpRSlGgVS8hoFkdAVGW53C9AX3V9lChoBmgJaA9DCMh5/x8ntF/AlIaUUpRoFUvIaBZHQFUJ+Sr5qM51fZQoaAZoCWgPQwg5DVGFv5xhwJSGlFKUaBVLyGgWR0BVw62jO9nLdX2UKGgGaAloD0MIYvay7TQdbcCUhpRSlGgVS8hoFkdAVmJvtMPBi3V9lChoBmgJaA9DCKVJKej2Uv6/lIaUUpRoFUvIaBZHQFcpy08eS0V1fZQoaAZoCWgPQwh5ymq6nipgwJSGlFKUaBVLyGgWR0BXuKPCEYfodX2UKGgGaAloD0MIraQV31BCbsCUhpRSlGgVS8hoFkdAWEufwqiGnHV9lChoBmgJaA9DCFSthVlo5+i/lIaUUpRoFUvIaBZHQFjS/hl18st1fZQoaAZoCWgPQwjeyDzyx/d0wJSGlFKUaBVLyGgWR0BZXN7SiM5wdX2UKGgGaAloD0MIECBDxw4kX8CUhpRSlGgVS8hoFkdAWgM1EVnEl3V9lChoBmgJaA9DCHFUbqLWtXXAlIaUUpRoFUvIaBZHQFqRUedTYNB1fZQoaAZoCWgPQwhYVMTppPJswJSGlFKUaBVLyGgWR0BbI8WfseGPdX2UKGgGaAloD0MIcm4T7hUmbsCUhpRSlGgVS8hoFkdAW6EYxcmjTXV9lChoBmgJaA9DCF1sWikEbF7AlIaUUpRoFUvIaBZHQFwaJUYKpkx1fZQoaAZoCWgPQwhm9+RhodBuwJSGlFKUaBVLyGgWR0Bcl8d5prULdX2UKGgGaAloD0MId4NorWj6XsCUhpRSlGgVS8hoFkdAXRSa+evpyXV9lChoBmgJaA9DCOG04EVfQQbAlIaUUpRoFUvIaBZHQF2LxGUfPop1fZQoaAZoCWgPQwjNWgpIO/N0wJSGlFKUaBVLyGgWR0BeA6CpWFN+dX2UKGgGaAloD0MIzEV8J6YTcMCUhpRSlGgVS8hoFkdAXnwYdhiLEXV9lChoBmgJaA9DCDeLFwtD5N+/lIaUUpRoFUvIaBZHQF74ORDCxeN1fZQoaAZoCWgPQwiM+E7MeldvwJSGlFKUaBVLyGgWR0BfbZA6dUbUdX2UKGgGaAloD0MILIApAwf4XcCUhpRSlGgVS8hoFkdAX+dstTUAk3V9lChoBmgJaA9DCM41zNB4817AlIaUUpRoFUvIaBZHQGAwYnv2GqR1fZQoaAZoCWgPQwhlprT+VoF2wJSGlFKUaBVLyGgWR0BgbdrO7g89dX2UKGgGaAloD0MI/IugMZOKXMCUhpRSlGgVS8hoFkdAYKwQtjCpFXV9lChoBmgJaA9DCF3BNuLJhl7AlIaUUpRoFUvIaBZHQGDoi8vmHQB1fZQoaAZoCWgPQwhuMNRhBeNuwJSGlFKUaBVLyGgWR0BhJXAwfyPNdX2UKGgGaAloD0MIM6fLYmK1X8CUhpRSlGgVS8hoFkdAYWqkxh2GI3V9lChoBmgJaA9DCJG28ScqaV7AlIaUUpRoFUvIaBZHQGHeACGN70F1fZQoaAZoCWgPQwg9fm/TnwtewJSGlFKUaBVLyGgWR0BiXS2hIvrXdX2UKGgGaAloD0MIi8Iuip7SbMCUhpRSlGgVS8hoFkdAYr8T238XN3V9lChoBmgJaA9DCGYucHms723AlIaUUpRoFUvIaBZHQGL+3evZAY51fZQoaAZoCWgPQwhxVdl3RXNdwJSGlFKUaBVLyGgWR0BjRov38GcGdX2UKGgGaAloD0MI0cyTawrjX8CUhpRSlGgVS8hoFkdAY4gukDZDiXV9lChoBmgJaA9DCNdtUPutndu/lIaUUpRoFUvIaBZHQGPiYIjW07d1fZQoaAZoCWgPQwjecvVjk/zbv5SGlFKUaBVLyGgWR0BkJLzXjENwdX2UKGgGaAloD0MI+tSxSukDX8CUhpRSlGgVS8hoFkdAZGNfUF0PpnV9lChoBmgJaA9DCJPIPsiykV3AlIaUUpRoFUvIaBZHQGSjdB8hLXd1fZQoaAZoCWgPQwiCjIAKR9VewJSGlFKUaBVLyGgWR0Bk4XbmEGqxdX2UKGgGaAloD0MI2NR5VPyZXcCUhpRSlGgVS8hoFkdAZSGiTt9hJHV9lChoBmgJaA9DCME24slulF3AlIaUUpRoFUvIaBZHQGVhHQID5j91fZQoaAZoCWgPQwgzpmCNs9NewJSGlFKUaBVLyGgWR0Bln6619fCzdX2UKGgGaAloD0MIeVvptdmUXsCUhpRSlGgVS8hoFkdAZeIphF3IMnV9lChoBmgJaA9DCEut9xttAm3AlIaUUpRoFUvIaBZHQGY6+W4Vh1F1fZQoaAZoCWgPQwh+Oh4zUMldwJSGlFKUaBVLyGgWR0BmiFo11nuidX2UKGgGaAloD0MIG5/J/nkDX8CUhpRSlGgVS8hoFkdAZsyCdSVGC3V9lChoBmgJaA9DCIFB0qdVf1/AlIaUUpRoFUvIaBZHQGcJQdS2php1fZQoaAZoCWgPQwi3C811GukQwJSGlFKUaBVLyGgWR0BnSwzFdcB2dX2UKGgGaAloD0MIgEdUqO4DYMCUhpRSlGgVS8hoFkdAZ5GvboKUmnV9lChoBmgJaA9DCH7IW65+QF/AlIaUUpRoFUvIaBZHQGft508vEjx1fZQoaAZoCWgPQwjl8bT8wLVewJSGlFKUaBVLyGgWR0BoPzg0j1PFdX2UKGgGaAloD0MIDJI+raK//7+UhpRSlGgVS8hoFkdAaI1BEa2nbnV9lChoBmgJaA9DCHjxftx+rl3AlIaUUpRoFUvIaBZHQGjKrPdEb5x1fZQoaAZoCWgPQwjKMVncf0QUwJSGlFKUaBVLyGgWR0BpBvfEXLvDdX2UKGgGaAloD0MIW+7MBMM5/7+UhpRSlGgVS8hoFkdAaURyQPqcE3V9lChoBmgJaA9DCJjbvdynCGDAlIaUUpRoFUvIaBZHQGmOPyTY/V11fZQoaAZoCWgPQwiMnfASnD1gwJSGlFKUaBVLyGgWR0Bp3Jcu8K5TdX2UKGgGaAloD0MID7bY7bMBXsCUhpRSlGgVS8hoFkdAahztNzr/sHV9lChoBmgJaA9DCA9h/DQu4HTAlIaUUpRoFUvIaBZHQGp1fe+Eh7p1ZS4="
83
  },
84
  "ep_success_buffer": {
85
  ":type:": "<class 'collections.deque'>",
86
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
  },
88
- "_n_updates": 20000,
89
  "buffer_size": 1,
90
  "batch_size": 256,
91
  "learning_starts": 100,
92
  "tau": 0.005,
93
  "gamma": 0.99,
94
- "gradient_steps": -1,
95
  "optimize_memory_usage": false,
96
  "replay_buffer_class": {
97
  ":type:": "<class 'abc.ABCMeta'>",
98
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
99
  "__module__": "stable_baselines3.common.buffers",
100
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
101
- "__init__": "<function ReplayBuffer.__init__ at 0x7f1c1593ecb0>",
102
- "add": "<function ReplayBuffer.add at 0x7f1c1593ed40>",
103
- "sample": "<function ReplayBuffer.sample at 0x7f1c15933440>",
104
- "_get_samples": "<function ReplayBuffer._get_samples at 0x7f1c159334d0>",
105
  "__abstractmethods__": "frozenset()",
106
- "_abc_impl": "<_abc_data object at 0x7f1c1599e3f0>"
107
  },
108
  "replay_buffer_kwargs": {},
109
  "train_freq": {
110
  ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
111
- ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RK/////2gAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
112
  },
113
  "use_sde_at_warmup": false,
114
  "target_entropy": -1.0,
115
  "ent_coef": "auto",
116
- "target_update_interval": 1,
117
- "n_episodes_rollout": 1
118
  }
 
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.sac.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7f5e9b6a1b00>",
8
+ "_build": "<function SACPolicy._build at 0x7f5e9b6a1b90>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f5e9b6a1c20>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7f5e9b6a1cb0>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7f5e9b6a1d40>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7f5e9b6a1dd0>",
13
+ "forward": "<function SACPolicy.forward at 0x7f5e9b6a1e60>",
14
+ "_predict": "<function SACPolicy._predict at 0x7f5e9b6a1ef0>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f5e9b6a1f80>",
16
  "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7f5e9b68e8d0>"
18
  },
19
  "verbose": 1,
20
  "policy_kwargs": {
21
+ "use_sde": false
 
 
 
 
 
22
  },
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
  "dtype": "float32",
27
+ "_shape": [
28
+ 3
29
+ ],
30
  "low": "[-1. -1. -8.]",
31
  "high": "[1. 1. 8.]",
32
  "bounded_below": "[ True True True]",
33
  "bounded_above": "[ True True True]",
34
+ "_np_random": null
 
 
 
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
39
  "dtype": "float32",
40
+ "_shape": [
41
+ 1
42
+ ],
43
  "low": "[-2.]",
44
  "high": "[2.]",
45
  "bounded_below": "[ True]",
46
  "bounded_above": "[ True]",
 
 
 
47
  "_np_random": "RandomState(MT19937)"
48
  },
49
  "n_envs": 1,
 
52
  "_num_timesteps_at_start": 0,
53
  "seed": 0,
54
  "action_noise": null,
55
+ "start_time": 1653249455.1774566,
56
  "learning_rate": {
57
  ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
59
  },
60
  "tensorboard_log": null,
61
  "lr_schedule": {
62
  ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
64
  },
65
  "_last_obs": null,
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
69
+ },
70
  "_last_original_obs": {
71
  ":type:": "<class 'numpy.ndarray'>",
72
+ ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAFZTfz+1kJQ93bbgvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
73
  },
74
  "_episode_num": 100,
75
+ "use_sde": false,
76
  "sde_sample_freq": -1,
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsb/snqwHk8CUhpRSlIwBbJRLyIwBdJRHP/hAGB4D9wZ1fZQoaAZoCWgPQwgsZoS3B52SwJSGlFKUaBVLyGgWR0ARiw2VE/jbdX2UKGgGaAloD0MIBvTCnUvBm8CUhpRSlGgVS8hoFkdAHR6r/82rGXV9lChoBmgJaA9DCOZY3lVP8pTAlIaUUpRoFUvIaBZHQCcb2FnIyTJ1fZQoaAZoCWgPQwiMD7OXHTiWwJSGlFKUaBVLyGgWR0Av9XoTwlSkdX2UKGgGaAloD0MIqOSc2FMLlsCUhpRSlGgVS8hoFkdAM88e8wpOOHV9lChoBmgJaA9DCFWKHY3zPJLAlIaUUpRoFUvIaBZHQDh5/axoqTd1fZQoaAZoCWgPQwhU5BBx47OUwJSGlFKUaBVLyGgWR0A9nFOfukULdX2UKGgGaAloD0MIDksDP5pGksCUhpRSlGgVS8hoFkdAQVC3mV7hN3V9lChoBmgJaA9DCKvRqwGKeJHAlIaUUpRoFUvIaBZHQEOQ/nGKhtd1fZQoaAZoCWgPQwifyf552jaEwJSGlFKUaBVLyGgWR0BF7TK9wm3OdX2UKGgGaAloD0MI9DY2O3JMgsCUhpRSlGgVS8hoFkdASKIGKQ7tA3V9lChoBmgJaA9DCONsOgI4bmDAlIaUUpRoFUvIaBZHQEq2GKQ7tAt1fZQoaAZoCWgPQwiaC1we6xVwwJSGlFKUaBVLyGgWR0BNBQ4bS7XhdX2UKGgGaAloD0MIX0NwXEY+cMCUhpRSlGgVS8hoFkdAT8OQlruYyHV9lChoBmgJaA9DCDfg88NILnDAlIaUUpRoFUvIaBZHQFFCZid8Rcx1fZQoaAZoCWgPQwhaRuo9lZPxv5SGlFKUaBVLyGgWR0BSfnwb2lEadX2UKGgGaAloD0MIATW1bK1v/L+UhpRSlGgVS8hoFkdAU5k4ACGN73V9lChoBmgJaA9DCJj75ChAtADAlIaUUpRoFUvIaBZHQFStpVS4vvl1fZQoaAZoCWgPQwj/klSmmKtdwJSGlFKUaBVLyGgWR0BV6T9CNS62dX2UKGgGaAloD0MIwLFnz2Uq8L+UhpRSlGgVS8hoFkdAVzMfYBeXzHV9lChoBmgJaA9DCPWidr8KPl/AlIaUUpRoFUvIaBZHQFhJV2Rq46R1fZQoaAZoCWgPQwgHXi13ZoLpv5SGlFKUaBVLyGgWR0BZTzDGcWj5dX2UKGgGaAloD0MIPSzUmualXcCUhpRSlGgVS8hoFkdAWktAhStNjHV9lChoBmgJaA9DCLQglPfxnZXAlIaUUpRoFUvIaBZHQFtE4C6pYLd1fZQoaAZoCWgPQwiw5CoWv31ewJSGlFKUaBVLyGgWR0BcaPaQFLWadX2UKGgGaAloD0MI9uy5TI0CcMCUhpRSlGgVS8hoFkdAXhTqoqCpWHV9lChoBmgJaA9DCFEyObUzDPa/lIaUUpRoFUvIaBZHQF+ZFBY3eep1fZQoaAZoCWgPQwgwZeCAlrhfwJSGlFKUaBVLyGgWR0BgcqaNMoMKdX2UKGgGaAloD0MIJzCd1m2fXcCUhpRSlGgVS8hoFkdAYQv/9YOlPHV9lChoBmgJaA9DCCTTodPzVl3AlIaUUpRoFUvIaBZHQGGoz7di2Dx1fZQoaAZoCWgPQwiLqIk+H59cwJSGlFKUaBVLyGgWR0BiQ3ms/6frdX2UKGgGaAloD0MIjsni/iMwXsCUhpRSlGgVS8hoFkdAYtq0OVgQYnV9lChoBmgJaA9DCONTAIzXmJbAlIaUUpRoFUvIaBZHQGNxZ0KZ2IR1fZQoaAZoCWgPQwiKHvgYrGFewJSGlFKUaBVLyGgWR0BkD7SVnmJWdX2UKGgGaAloD0MIzqrP1XabhcCUhpRSlGgVS8hoFkdAZLfp+tr9EXV9lChoBmgJaA9DCKT6zi8K8nLAlIaUUpRoFUvIaBZHQGVXU8vEjxF1fZQoaAZoCWgPQwip3EQtzWV2wJSGlFKUaBVLyGgWR0Bl6StozvZzdX2UKGgGaAloD0MIXcMMjScqbcCUhpRSlGgVS8hoFkdAZng2ZRbbDnV9lChoBmgJaA9DCHGsi9toWV/AlIaUUpRoFUvIaBZHQGcHTKDCgsd1fZQoaAZoCWgPQwjgaMcNv+x2wJSGlFKUaBVLyGgWR0BnljXSSeRQdX2UKGgGaAloD0MIMxZNZ6dFb8CUhpRSlGgVS8hoFkdAaCv6DXe3yHV9lChoBmgJaA9DCGr7V1aad1/AlIaUUpRoFUvIaBZHQGjGrUkOZst1fZQoaAZoCWgPQwikMzDyspdxwJSGlFKUaBVLyGgWR0Bpau40/GEPdX2UKGgGaAloD0MIaqUQyCVbX8CUhpRSlGgVS8hoFkdAagYGVRk3CXV9lChoBmgJaA9DCKkVpu81ol7AlIaUUpRoFUvIaBZHQGqb97ngYP51fZQoaAZoCWgPQwg9RQ4RN0hewJSGlFKUaBVLyGgWR0BrLWQhfShKdX2UKGgGaAloD0MInu+nxks3AcCUhpRSlGgVS8hoFkdAa8WRNh3JP3V9lChoBmgJaA9DCDHO34TCYG3AlIaUUpRoFUvIaBZHQGxeTmwJPZZ1fZQoaAZoCWgPQwiCkCxgAjxwwJSGlFKUaBVLyGgWR0Bs9a5I6KcedX2UKGgGaAloD0MIqmQAqOKaXMCUhpRSlGgVS8hoFkdAbZrbWVeKK3V9lChoBmgJaA9DCGVW73A7VADAlIaUUpRoFUvIaBZHQG5B8yvcJt11fZQoaAZoCWgPQwg6svLLYKxdwJSGlFKUaBVLyGgWR0Bu5LPhQ3xXdX2UKGgGaAloD0MIvTlcqz1lXsCUhpRSlGgVS8hoFkdAb38nxaxHG3V9lChoBmgJaA9DCDAt6pPch17AlIaUUpRoFUvIaBZHQHANEy1uzhR1fZQoaAZoCWgPQwinQdE8APNrwJSGlFKUaBVLyGgWR0BwXMAdXDFZdX2UKGgGaAloD0MIaVGf5A78XcCUhpRSlGgVS8hoFkdAcKf8UmD15HV9lChoBmgJaA9DCJYjZCDPy13AlIaUUpRoFUvIaBZHQHDrKrFOwgV1fZQoaAZoCWgPQwh2qRH6ma9ewJSGlFKUaBVLyGgWR0BxNTHHWBjGdX2UKGgGaAloD0MIWDz1SIP0XcCUhpRSlGgVS8hoFkdAcYQsD4gzQHV9lChoBmgJaA9DCGQGKuPfZw/AlIaUUpRoFUvIaBZHQHHH7fk3juN1fZQoaAZoCWgPQwibcRqiCsVewJSGlFKUaBVLyGgWR0ByCtiH6/IsdX2UKGgGaAloD0MIVWthFlpHbMCUhpRSlGgVS8hoFkdAckzazeGfw3V9lChoBmgJaA9DCOBIoMGmqF7AlIaUUpRoFUvIaBZHQHKRGSEDhcZ1fZQoaAZoCWgPQwjgS+FBM6NzwJSGlFKUaBVLyGgWR0By1E+Y+jdpdX2UKGgGaAloD0MIDR07qMTjXcCUhpRSlGgVS8hoFkdAcxfOMVDa5HV9lChoBmgJaA9DCCOfVzx1GWzAlIaUUpRoFUvIaBZHQHNb/jXFtKt1fZQoaAZoCWgPQwguNxjqsDRfwJSGlFKUaBVLyGgWR0BzrMaBI4EPdX2UKGgGaAloD0MIFcYWghzjX8CUhpRSlGgVS8hoFkdAc/esPrfLtHV9lChoBmgJaA9DCDc3picssf6/lIaUUpRoFUvIaBZHQHQ//+S8rZt1fZQoaAZoCWgPQwhqF9NM9wZfwJSGlFKUaBVLyGgWR0B0iu2kSElFdX2UKGgGaAloD0MIQiRDjq38XcCUhpRSlGgVS8hoFkdAdNHjC53C9HV9lChoBmgJaA9DCP94r1qZ8P+/lIaUUpRoFUvIaBZHQHUYdkSVW0Z1fZQoaAZoCWgPQwjKqDKMO8puwJSGlFKUaBVLyGgWR0B1Xu3ocJdCdX2UKGgGaAloD0MItydIbHeQbMCUhpRSlGgVS8hoFkdAdab9Ujs2N3V9lChoBmgJaA9DCGWlSSnooV3AlIaUUpRoFUvIaBZHQHXvKqjrRjV1fZQoaAZoCWgPQwjUDn9NVsVswJSGlFKUaBVLyGgWR0B2MTYDklu4dX2UKGgGaAloD0MIjQxyF+GIbsCUhpRSlGgVS8hoFkdAdnN/FR51NnV9lChoBmgJaA9DCGkc6ndhCG3AlIaUUpRoFUvIaBZHQHa2eLm6oVF1fZQoaAZoCWgPQwitwfuqXMNcwJSGlFKUaBVLyGgWR0B2+zj1f3N+dX2UKGgGaAloD0MI5iFTPgRVXsCUhpRSlGgVS8hoFkdAdz9wTufEoHV9lChoBmgJaA9DCC/ej9svTF/AlIaUUpRoFUvIaBZHQHeCM7hegL91fZQoaAZoCWgPQwgsLo7KTZJfwJSGlFKUaBVLyGgWR0B3xOvStvGZdX2UKGgGaAloD0MItOidCjj/bcCUhpRSlGgVS8hoFkdAeBGejmCAc3V9lChoBmgJaA9DCHuH26HhL27AlIaUUpRoFUvIaBZHQHhl7aVUuL91fZQoaAZoCWgPQwhSYWwhyIEBwJSGlFKUaBVLyGgWR0B4reaoddVvdX2UKGgGaAloD0MIhuXPtwXoX8CUhpRSlGgVS8hoFkdAePLYqoZQ53V9lChoBmgJaA9DCO2b+6vH/l3AlIaUUpRoFUvIaBZHQHku18CxNZh1fZQoaAZoCWgPQwgShZZ1/9gEwJSGlFKUaBVLyGgWR0B5au0LMLWqdX2UKGgGaAloD0MI2quPh74bX8CUhpRSlGgVS8hoFkdAeazCKaXrt3V9lChoBmgJaA9DCOG04EVfYQjAlIaUUpRoFUvIaBZHQHntTbJwKjV1fZQoaAZoCWgPQwj0Fg/vOXD5v5SGlFKUaBVLyGgWR0B6J1/I8yN5dX2UKGgGaAloD0MIuoJtxBOFbMCUhpRSlGgVS8hoFkdAemI7qY7aI3V9lChoBmgJaA9DCKDiOPBq0F7AlIaUUpRoFUvIaBZHQHqfxLf1pTN1fZQoaAZoCWgPQwjmIVM+BPxewJSGlFKUaBVLyGgWR0B625p/PPcBdX2UKGgGaAloD0MIYhBYOTQebsCUhpRSlGgVS8hoFkdAexVsvqTr3XV9lChoBmgJaA9DCPgZFw4En2zAlIaUUpRoFUvIaBZHQHtP2ilBQep1fZQoaAZoCWgPQwiH+IctPWVtwJSGlFKUaBVLyGgWR0B7jGoP07KadX2UKGgGaAloD0MI1esWgXGLccCUhpRSlGgVS8hoFkdAe8ZvpyIYWXV9lChoBmgJaA9DCAwDllzF327AlIaUUpRoFUvIaBZHQHv/27aqS5l1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 19900,
87
  "buffer_size": 1,
88
  "batch_size": 256,
89
  "learning_starts": 100,
90
  "tau": 0.005,
91
  "gamma": 0.99,
92
+ "gradient_steps": 1,
93
  "optimize_memory_usage": false,
94
  "replay_buffer_class": {
95
  ":type:": "<class 'abc.ABCMeta'>",
96
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
97
  "__module__": "stable_baselines3.common.buffers",
98
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
99
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f5e9bb06cb0>",
100
+ "add": "<function ReplayBuffer.add at 0x7f5e9bb06d40>",
101
+ "sample": "<function ReplayBuffer.sample at 0x7f5e9bafc440>",
102
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f5e9bafc4d0>",
103
  "__abstractmethods__": "frozenset()",
104
+ "_abc_impl": "<_abc_data object at 0x7f5e9bb653f0>"
105
  },
106
  "replay_buffer_kwargs": {},
107
  "train_freq": {
108
  ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
109
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
110
  },
111
  "use_sde_at_warmup": false,
112
  "target_entropy": -1.0,
113
  "ent_coef": "auto",
114
+ "target_update_interval": 1
 
115
  }
sac-Pendulum-v1/ent_coef_optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:90fe68288e56808ca47de578855ddde74448da3071221e41a7d5beb541e251cb
3
  size 1191
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:299ae9796b8c15f713fae5dc68ea0cf8695c52ba990aac945847bcc55a55801a
3
  size 1191
sac-Pendulum-v1/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6df1e5064252049d0c2b85379017680caec419fe5876e3bdbe8970c390dd4fbd
3
- size 101000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:756a5ba0a333d5e71d09c549d872a8a8d81470e1389ad88ac2c0f29c321b9058
3
+ size 1357125
sac-Pendulum-v1/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b49e3e131f68a2c82af7f4a7a03d153b4f2b49d8720cc268f854efe85711e196
3
  size 747
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fd4c5341f109009e7b669a7c8e5026273c2f99c1d351e4e6b0a29a862f3bde9
3
  size 747
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c10d45aaabe0dfb521d8128b6d98b9b25b7615cbc8912a9cdd4016b4efc5a8b
3
- size 3904
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:156083ebf36e40a969d6047de3ddb6180e74b53385b6726cd8d8289aa0b2c814
3
+ size 2928