Initial commit
Browse files- .gitattributes +1 -0
- README.md +58 -0
- a2c-CartPole-v1.zip +3 -0
- a2c-CartPole-v1/_stable_baselines3_version +1 -0
- a2c-CartPole-v1/data +93 -0
- a2c-CartPole-v1/policy.optimizer.pth +3 -0
- a2c-CartPole-v1/policy.pth +3 -0
- a2c-CartPole-v1/pytorch_variables.pth +3 -0
- a2c-CartPole-v1/system_info.txt +7 -0
- args.yml +59 -0
- config.yml +9 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 500.00 +/- 0.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: CartPole-v1
|
20 |
+
type: CartPole-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **CartPole-v1**
|
24 |
+
This is a trained model of a **A2C** agent playing **CartPole-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo a2c --env CartPole-v1 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo a2c --env CartPole-v1 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo a2c --env CartPole-v1 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo a2c --env CartPole-v1 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('ent_coef', 0.0),
|
54 |
+
('n_envs', 8),
|
55 |
+
('n_timesteps', 500000.0),
|
56 |
+
('policy', 'MlpPolicy'),
|
57 |
+
('normalize', False)])
|
58 |
+
```
|
a2c-CartPole-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7a20df4460daf2788272fbcb751fa8d929fa979e899b8ed47ad1a82062fea97
|
3 |
+
size 97047
|
a2c-CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
a2c-CartPole-v1/data
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f87ba96bef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f87ba96bf80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87ba973050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f87ba9730e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f87ba973170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f87ba973200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f87ba973290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f87ba973320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f87ba9733b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f87ba973440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f87ba9734d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f87ba9aaf90>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
25 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
26 |
+
"optimizer_kwargs": {
|
27 |
+
"alpha": 0.99,
|
28 |
+
"eps": 1e-05,
|
29 |
+
"weight_decay": 0
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUjAFDlHSUUpSMBGhpZ2iUaBAolhAAAAAAAAAAmpmZQP//f39Qd9Y+//9/f5RoCksEhZRoE3SUUpSMDWJvdW5kZWRfYmVsb3eUaBAolgQAAAAAAAAAAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksEhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgQAAAAAAAAAAQEBAZRoH0sEhZRoE3SUUpSMCl9ucF9yYW5kb22UTowGX3NoYXBllEsEhZR1Yi4=",
|
35 |
+
"dtype": "float32",
|
36 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
37 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
38 |
+
"bounded_below": "[ True True True True]",
|
39 |
+
"bounded_above": "[ True True True True]",
|
40 |
+
"_np_random": null,
|
41 |
+
"_shape": [
|
42 |
+
4
|
43 |
+
]
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
47 |
+
":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
|
48 |
+
"n": 2,
|
49 |
+
"dtype": "int64",
|
50 |
+
"_np_random": "RandomState(MT19937)",
|
51 |
+
"_shape": []
|
52 |
+
},
|
53 |
+
"n_envs": 8,
|
54 |
+
"num_timesteps": 500000,
|
55 |
+
"_total_timesteps": 500000,
|
56 |
+
"_num_timesteps_at_start": 0,
|
57 |
+
"seed": 0,
|
58 |
+
"action_noise": null,
|
59 |
+
"start_time": 1614619329.0860486,
|
60 |
+
"learning_rate": 0.0007,
|
61 |
+
"tensorboard_log": null,
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": null,
|
68 |
+
"_last_original_obs": null,
|
69 |
+
"_episode_num": 0,
|
70 |
+
"use_sde": false,
|
71 |
+
"sde_sample_freq": -1,
|
72 |
+
"_current_progress_remaining": 0.0,
|
73 |
+
"ep_info_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAaT/fKp1ifHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGlF2M85jpd1fZQoaAZHQH9AAAAAAABoB030AWgIR0BpSOitaIN3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaUqA2AG0NXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGlQpfx+a0B1fZQoaAZHQH9AAAAAAABoB030AWgIR0BpVGYjSofkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaVYG+sYEXHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGlYsBhhH9Z1fZQoaAZHQH9AAAAAAABoB030AWgIR0BpWQE8q4H5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaV77qptJnXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGliCobXHzZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BpY6DGtITXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaWmR9w3o93V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGltPD50r9V1fZQoaAZHQH9AAAAAAABoB030AWgIR0BpbtIRRMvidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaXFnIQvpQnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGlxrfcer+51fZQoaAZHQH9AAAAAAABoB030AWgIR0Bpd6akRBeHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaXqw2VE/jnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGl8Rp+MIeJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bpz5myxA0LdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAadNZJTVDr3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGnU+/Yao/B1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bp17kyULUkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAadgCUX531XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGnd7tZ3cHp1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bp4PL3bmEHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaeKGJvYOD3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGnoiA2AG0N1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bp7Dnied08dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAae3WhAWznnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGnwdDx9XtB1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bp8L7TDwYtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAafay/KyOaXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGn5vw3HaOB1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bp+1Qj2SMcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAagFaM72crnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGoFDvVmSQp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BqBq+SKWLQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAalZiOvMbFXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGpWradtl7N1fZQoaAZHQH9AAAAAAABoB030AWgIR0BqXJ6jWTX8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAal+cGTs6aXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGphKZDzAet1fZQoaAZHQH9AAAAAAABoB030AWgIR0BqZwDcM3IddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAamqhZha1TnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGpsMpPRArx1fZQoaAZHQH9AAAAAAABoB030AWgIR0BqbsFbFCLNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAam8Gnn+yaHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGp01inYQJ51fZQoaAZHQH9AAAAAAABoB030AWgIR0Bqd927nPmgdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAanl0uDjBEnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGp/ejdpItl1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bqgy2Yv38GdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaoTLIxQBP3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGqHbp3X7Lt1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bqh7j5sTFmdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAao2qSX+l03V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGqQsOXmeUZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BqkkU7CBPLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAauVCkXUH6nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGro/MOf/WF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bq6pu63AmBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAau1ApKBd2XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGrtjD8+A3F1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bq84ISlFc6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAavaKArhBJXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGr4Hk1dgOV1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bq/iQRwqAjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAawHXarWAgHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGsDdlEqlP91fZQoaAZHQH9AAAAAAABoB030AWgIR0BrBhN7BwdbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAawZZ1V5rxnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGsMJmVZ9ux1fZQoaAZHQH9AAAAAAABoB030AWgIR0BrDxwKjSG8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaxCrlNlAeXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGsWlt8/lhh1fZQoaAZHQH9AAAAAAABoB030AWgIR0BrGjTvy9VWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaxvDEWIoE3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGtrDp1RtP51fZQoaAZHQH9AAAAAAABoB030AWgIR0Bra1YOlO45dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAa3E/lhgE2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGt0Qw9JSR91fZQoaAZHQH9AAAAAAABoB030AWgIR0BrddWS2Yv4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAa3vKcNH6M3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGt/jziCJ411fZQoaAZHQH9AAAAAAABoB030AWgIR0BrgSunuRcNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAa4PGACnxa3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGuEDfFaSs91fZQoaAZHQH9AAAAAAABoB030AWgIR0BrifJDE3sHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAa4zzqbBoEnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGuOhT4tYjl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BrlIuqWC2+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAa5g8r7O3UnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGuZ17pmmLt1fZQoaAZHQH9AAAAAAABoB030AWgIR0BrnHFrEcbSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAa5y4pc5bQnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGuio3aSLZV1fZQoaAZHQH9AAAAAAABoB030AWgIR0Brpaa9bor4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAa6c4yXUpeHVlLg=="
|
76 |
+
},
|
77 |
+
"ep_success_buffer": {
|
78 |
+
":type:": "<class 'collections.deque'>",
|
79 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
80 |
+
},
|
81 |
+
"_n_updates": 12500,
|
82 |
+
"n_steps": 5,
|
83 |
+
"gamma": 0.99,
|
84 |
+
"gae_lambda": 1.0,
|
85 |
+
"ent_coef": 0.0,
|
86 |
+
"vf_coef": 0.5,
|
87 |
+
"max_grad_norm": 0.5,
|
88 |
+
"normalize_advantage": false,
|
89 |
+
"_last_dones": {
|
90 |
+
":type:": "<class 'numpy.ndarray'>",
|
91 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
92 |
+
}
|
93 |
+
}
|
a2c-CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1067fc19388933e57c3dea9a16f4432c06b63a3324ffbf8791a1531bde01fa69
|
3 |
+
size 39873
|
a2c-CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f15b0da85d614c0cca6d44a47ab1ad5cb0637ca4dcaa4ed01a9aa562a15e998b
|
3 |
+
size 40513
|
a2c-CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
|
2 |
+
Python: 3.7.12
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0+cpu
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - env
|
5 |
+
- CartPole-v1
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 252933904
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - n_envs
|
5 |
+
- 8
|
6 |
+
- - n_timesteps
|
7 |
+
- 500000.0
|
8 |
+
- - policy
|
9 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:548afd03c3e567461b10bc01330b0705cbab616f073475ec91ecccdb32a968d1
|
3 |
+
size 67710
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T12:49:00.324066"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14993df04a20f375d81eb060c0d6c9485c5ea44ef1bb16fb621599a153582232
|
3 |
+
size 42417
|