File size: 2,038 Bytes
6cf8438 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-v3-multids-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-multids-v3
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0675
- Wer: 1.7195
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.3186 | 3.0215 | 250 | 0.1316 | 3.0916 |
| 0.1075 | 7.0085 | 500 | 0.0966 | 2.3375 |
| 0.0834 | 10.03 | 750 | 0.0832 | 2.0758 |
| 0.0774 | 14.017 | 1000 | 0.0762 | 1.8596 |
| 0.0693 | 18.004 | 1250 | 0.0721 | 1.7943 |
| 0.065 | 21.0255 | 1500 | 0.0696 | 1.7406 |
| 0.0634 | 25.0125 | 1750 | 0.0681 | 1.7324 |
| 0.0612 | 28.034 | 2000 | 0.0675 | 1.7195 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1.dev0
- Tokenizers 0.19.1
|