sarwarbeing
commited on
Commit
·
d461c99
1
Parent(s):
edc295b
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.25 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:342c44dfd114b2b40d941c4fc4b2d9e32e8dd07bb0e65f0cf7fcf0c03d1f6ec9
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79e8d3365090>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x79e8d3368200>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692637524405497802,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIuyGP6bF2b6iEn8+ttPTvRHK3T70WWu+P07Nv4mDDMDlIBjASkeEPki4C7yGBNs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuy/KP5obnr+SxNG+uwt/v53MND8LHwG9KHdgv4R/xb/6pLm/NVCVv2DEoL+DMMs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAi7IY/psXZvqISfz4/78w/RXjLv02ukb+209O9EcrdPvRZa748EvG/TLnVP7Q/s78/Ts2/iYMMwOUgGMB0kbK/+CWKvw/wdL9KR4Q+SLgLvIYE2z5e3fY+nqExOqx1wz6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 1.0540812 -0.42533606 0.24909452]\n [-0.10343115 0.43318227 -0.22983533]\n [-1.6039504 -2.1955283 -2.3770077 ]\n [ 0.2583564 -0.00852782 0.4277689 ]]",
|
34 |
+
"desired_goal": "[[ 1.5795816 -1.2352173 -0.40970284]\n [-0.99627274 0.70624715 -0.03152375]\n [-0.8768182 -1.542954 -1.4503472 ]\n [-1.1665102 -1.2559929 1.587418 ]]",
|
35 |
+
"observation": "[[ 1.0540812e+00 -4.2533606e-01 2.4909452e-01 1.6010512e+00\n -1.5896078e+00 -1.1381317e+00]\n [-1.0343115e-01 4.3318227e-01 -2.2983533e-01 -1.8833690e+00\n 1.6697173e+00 -1.4003816e+00]\n [-1.6039504e+00 -2.1955283e+00 -2.3770077e+00 -1.3950639e+00\n -1.0792837e+00 -9.5678800e-01]\n [ 2.5835639e-01 -8.5278228e-03 4.2776889e-01 4.8215765e-01\n 6.7760970e-04 3.8175714e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmoUCvjNnir0yILo9xrIFPgaqRL0ONkk+6V2que3YzT0nFQ8+yvA4PVCNZj12cok7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.12746277 -0.06757965 0.09088172]\n [ 0.13056478 -0.04801371 0.19649526]\n [-0.00032495 0.10051141 0.13972913]\n [ 0.04515151 0.05628711 0.00419455]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6czQ/oq0+mMAWyUSwGMAXSUR0CmOCQ9aEBbdX2UKGgGR7/FV/c32mHhaAdLAmgIR0CmOLR95QgtdX2UKGgGR7/RinHeaa1DaAdLA2gIR0CmN+eNcW0rdX2UKGgGR7/ROMERraduaAdLA2gIR0CmODBNmDlHdX2UKGgGR7+jIHTqjaf0aAdLAWgIR0CmN+vzFuNxdX2UKGgGR7/Ce9SMtK7JaAdLAmgIR0CmOL1O9FnadX2UKGgGR7/Ozch1Tzd2aAdLBGgIR0CmOHojOcDsdX2UKGgGR7+mCTUy57PZaAdLAWgIR0CmOMQYLsrvdX2UKGgGR7/Kd/8VHnU2aAdLA2gIR0CmOInAqNIcdX2UKGgGR7/drRBu4wyqaAdLBGgIR0CmOETpHI6sdX2UKGgGR7/XssQNCqp+aAdLBGgIR0CmOADT8YQ8dX2UKGgGR7/RY8Md92HMaAdLA2gIR0CmONH8CPp7dX2UKGgGR7/FyRSxZ+x4aAdLAmgIR0CmOJKQ7tAtdX2UKGgGR7+3GR3eN1hcaAdLAmgIR0CmOE3mV7hOdX2UKGgGR7/QKlYU34sVaAdLA2gIR0CmOA96C17ZdX2UKGgGR7/SY287IT4+aAdLA2gIR0CmOOC83++/dX2UKGgGR7/GAAAAAAAAaAdLAmgIR0CmOFiVrylOdX2UKGgGR7/SUedTYNAkaAdLA2gIR0CmOKJAdGRWdX2UKGgGR7/AcPvrnkksaAdLAmgIR0CmOBoBRyfddX2UKGgGR7/FAAQxvegtaAdLAmgIR0CmOGP0RODbdX2UKGgGR7/PQswtapxWaAdLA2gIR0CmOPBkqc3EdX2UKGgGR7/OcI7eVLSNaAdLA2gIR0CmOLPZh8YydX2UKGgGR7/R+otL+PzWaAdLA2gIR0CmOCpu2qkudX2UKGgGR7/Sje9Ba9saaAdLA2gIR0CmOP9/8VHndX2UKGgGR7/NJIUahpQDaAdLBGgIR0CmOHdUjs2OdX2UKGgGR7/JpblijL0SaAdLA2gIR0CmOMBfa6BidX2UKGgGR7/Qyi22G7BgaAdLA2gIR0CmODb5mAbydX2UKGgGR7/QzJZGKAJ+aAdLA2gIR0CmOQ6Jyhi9dX2UKGgGR7/XlkYoAn2JaAdLBGgIR0CmOIqdH2AYdX2UKGgGR7/S77Kq4pc5aAdLA2gIR0CmOEZIH1OCdX2UKGgGR7/Z+ocaOxSpaAdLBGgIR0CmONRLkCFLdX2UKGgGR7+0GqxTsIE9aAdLAmgIR0CmOE67mMfjdX2UKGgGR7/T47ihnJ1aaAdLBGgIR0CmOR/IS13MdX2UKGgGR7/KpSaVlf7aaAdLA2gIR0CmOOQyyleodX2UKGgGR7/Umr8zhxYJaAdLBGgIR0CmOJ/+0gKXdX2UKGgGR7/AmfoRqXWwaAdLAmgIR0CmOFuTJQtSdX2UKGgGR7+VTJhfBvaUaAdLAWgIR0CmOKTj3mFKdX2UKGgGR7/HSBshxHXmaAdLA2gIR0CmOTIJAt4BdX2UKGgGR7/JJf6XSjQBaAdLA2gIR0CmOGlq8DjjdX2UKGgGR7/Y0gbIcR16aAdLBGgIR0CmOPd1loUSdX2UKGgGR7+jYf4h2W6caAdLAWgIR0CmOG30f5k9dX2UKGgGR7/S3wTdtVJdaAdLA2gIR0CmOUGY8dPtdX2UKGgGR7/YMY/FBIFvaAdLBGgIR0CmOLl5v99/dX2UKGgGR7/EG4ZuQ6p6aAdLA2gIR0CmOQbojfNzdX2UKGgGR7/OfV7Qb+98aAdLA2gIR0CmOH2xptaZdX2UKGgGR7/UQmeDnNgSaAdLA2gIR0CmOMaInBtUdX2UKGgGR7/W3JxNqQA/aAdLBGgIR0CmOVM10knkdX2UKGgGR7/J78ejmCAdaAdLA2gIR0CmORYPf8/EdX2UKGgGR7/VMnqmj0tiaAdLA2gIR0CmOIyPuG9IdX2UKGgGR7/BqCYkVvdeaAdLAmgIR0CmOV2c8TzvdX2UKGgGR7+ch1Tzd1uBaAdLAWgIR0CmOJFL39JjdX2UKGgGR7/VUbDMvAXVaAdLBGgIR0CmONpItlI3dX2UKGgGR7/RrxiG34KyaAdLA2gIR0CmOSP+OwPidX2UKGgGR7/T6BiCrcTKaAdLA2gIR0CmOJ63iJfqdX2UKGgGR7/djqOcUdq+aAdLBGgIR0CmOXJmEoOQdX2UKGgGR7/G96kZaV2SaAdLA2gIR0CmOOp9AooedX2UKGgGR7+hemelKsdUaAdLAWgIR0CmOKY3eenRdX2UKGgGR7/WQjlgc94eaAdLA2gIR0CmOTPxpcoqdX2UKGgGR7+m6d1+y7f6aAdLAWgIR0CmOTf9xZMddX2UKGgGR7+7EyckMTewaAdLAmgIR0CmOPMsxwhodX2UKGgGR7/U7tzCDVYqaAdLA2gIR0CmOX+TmnwYdX2UKGgGR7/VR4yGi5/caAdLBGgIR0CmOLb1AZ88dX2UKGgGR7+2cx0uDjBEaAdLAmgIR0CmOYpbMX7+dX2UKGgGR7/N3SKFZgXuaAdLA2gIR0CmOUdXko4NdX2UKGgGR7/feY2Kl54XaAdLBGgIR0CmOQY7ihnKdX2UKGgGR7+3KSxJNCZ4aAdLAmgIR0CmOMHH/95ydX2UKGgGR7/Aws5GSZBtaAdLAmgIR0CmOU+PzWf9dX2UKGgGR7/RBguyu6mPaAdLA2gIR0CmOZbn5i3HdX2UKGgGR7+nWOIZZSvUaAdLAWgIR0CmOVOzhP0qdX2UKGgGR7+jiqABkqc3aAdLAWgIR0CmOVfxc3VDdX2UKGgGR7/HGZuyeI2waAdLA2gIR0CmORNb9qDcdX2UKGgGR7+xnh86V+qjaAdLAmgIR0CmOaIQFs55dX2UKGgGR7/RpHZsbedkaAdLBGgIR0CmONVUEPlNdX2UKGgGR7/AAeaKDTScaAdLAmgIR0CmOWNmL9/CdX2UKGgGR7/TWQfZElVtaAdLA2gIR0CmOSMenyd4dX2UKGgGR7/DewcHWz4UaAdLAmgIR0CmON7Wd3B6dX2UKGgGR7/Ppwjt5UtJaAdLA2gIR0CmOa/ywwCbdX2UKGgGR7/RlU6xPfsNaAdLA2gIR0CmOXDaPCEYdX2UKGgGR7/QCROk+HJtaAdLA2gIR0CmOTJjUd7wdX2UKGgGR7/HI+W4Vh1DaAdLA2gIR0CmOO3xe9i+dX2UKGgGR7+mK8+RoysTaAdLAWgIR0CmOTbW3BpIdX2UKGgGR7/XVQAMlTm5aAdLBGgIR0CmOcODBdledX2UKGgGR7/XC53C9AX3aAdLA2gIR0CmOYBTOxB3dX2UKGgGR7+6sny/bj95aAdLAmgIR0CmOPbBGhEjdX2UKGgGR7/QGIKtxMnJaAdLA2gIR0CmOUO3+dbxdX2UKGgGR7/OlZ5iVjZtaAdLA2gIR0CmOdJ/PPcBdX2UKGgGR7/NI1+AmReUaAdLA2gIR0CmOY95Y5ktdX2UKGgGR7/Kit7rs0HhaAdLA2gIR0CmOQX8n/kvdX2UKGgGR7+9WbPQfIS2aAdLAmgIR0CmOZfR/mT1dX2UKGgGR7/KgFHJ9y93aAdLA2gIR0CmOVNN8E3bdX2UKGgGR7/VsZYPoV2zaAdLBGgIR0CmOePegte2dX2UKGgGR7/B0z0pVjqfaAdLAmgIR0CmOVvWpZOjdX2UKGgGR7/XsFt8/lhgaAdLBGgIR0CmORds7+1jdX2UKGgGR7/T3H7xd6cBaAdLA2gIR0CmOafbblBAdX2UKGgGR7/CiW3Sa3I/aAdLAmgIR0CmOe/tx+8XdX2UKGgGR7+7R2KVII4VaAdLAmgIR0CmOWfOlfqpdX2UKGgGR7/L8n/kvK2baAdLA2gIR0CmOSpOerdWdX2UKGgGR7+2u8scyWRjaAdLAmgIR0CmOfy925hCdX2UKGgGR7/VeAuqWC2+aAdLA2gIR0CmObrUkOZtdX2UKGgGR7/E6pYLb5/LaAdLAmgIR0CmOTZqubI+dWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40c90b0474373107039167fe0e73bc6aed6bdc6f16bf40d0858e14d5d5388481
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:717ebbaaa69417715d783f8bfed427c26183c6b60aa2759107592d69431d1f0f
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79e8d3365090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79e8d3368200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692637524405497802, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIuyGP6bF2b6iEn8+ttPTvRHK3T70WWu+P07Nv4mDDMDlIBjASkeEPki4C7yGBNs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuy/KP5obnr+SxNG+uwt/v53MND8LHwG9KHdgv4R/xb/6pLm/NVCVv2DEoL+DMMs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAi7IY/psXZvqISfz4/78w/RXjLv02ukb+209O9EcrdPvRZa748EvG/TLnVP7Q/s78/Ts2/iYMMwOUgGMB0kbK/+CWKvw/wdL9KR4Q+SLgLvIYE2z5e3fY+nqExOqx1wz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.0540812 -0.42533606 0.24909452]\n [-0.10343115 0.43318227 -0.22983533]\n [-1.6039504 -2.1955283 -2.3770077 ]\n [ 0.2583564 -0.00852782 0.4277689 ]]", "desired_goal": "[[ 1.5795816 -1.2352173 -0.40970284]\n [-0.99627274 0.70624715 -0.03152375]\n [-0.8768182 -1.542954 -1.4503472 ]\n [-1.1665102 -1.2559929 1.587418 ]]", "observation": "[[ 1.0540812e+00 -4.2533606e-01 2.4909452e-01 1.6010512e+00\n -1.5896078e+00 -1.1381317e+00]\n [-1.0343115e-01 4.3318227e-01 -2.2983533e-01 -1.8833690e+00\n 1.6697173e+00 -1.4003816e+00]\n [-1.6039504e+00 -2.1955283e+00 -2.3770077e+00 -1.3950639e+00\n -1.0792837e+00 -9.5678800e-01]\n [ 2.5835639e-01 -8.5278228e-03 4.2776889e-01 4.8215765e-01\n 6.7760970e-04 3.8175714e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmoUCvjNnir0yILo9xrIFPgaqRL0ONkk+6V2que3YzT0nFQ8+yvA4PVCNZj12cok7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12746277 -0.06757965 0.09088172]\n [ 0.13056478 -0.04801371 0.19649526]\n [-0.00032495 0.10051141 0.13972913]\n [ 0.04515151 0.05628711 0.00419455]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6czQ/oq0+mMAWyUSwGMAXSUR0CmOCQ9aEBbdX2UKGgGR7/FV/c32mHhaAdLAmgIR0CmOLR95QgtdX2UKGgGR7/RinHeaa1DaAdLA2gIR0CmN+eNcW0rdX2UKGgGR7/ROMERraduaAdLA2gIR0CmODBNmDlHdX2UKGgGR7+jIHTqjaf0aAdLAWgIR0CmN+vzFuNxdX2UKGgGR7/Ce9SMtK7JaAdLAmgIR0CmOL1O9FnadX2UKGgGR7/Ozch1Tzd2aAdLBGgIR0CmOHojOcDsdX2UKGgGR7+mCTUy57PZaAdLAWgIR0CmOMQYLsrvdX2UKGgGR7/Kd/8VHnU2aAdLA2gIR0CmOInAqNIcdX2UKGgGR7/drRBu4wyqaAdLBGgIR0CmOETpHI6sdX2UKGgGR7/XssQNCqp+aAdLBGgIR0CmOADT8YQ8dX2UKGgGR7/RY8Md92HMaAdLA2gIR0CmONH8CPp7dX2UKGgGR7/FyRSxZ+x4aAdLAmgIR0CmOJKQ7tAtdX2UKGgGR7+3GR3eN1hcaAdLAmgIR0CmOE3mV7hOdX2UKGgGR7/QKlYU34sVaAdLA2gIR0CmOA96C17ZdX2UKGgGR7/SY287IT4+aAdLA2gIR0CmOOC83++/dX2UKGgGR7/GAAAAAAAAaAdLAmgIR0CmOFiVrylOdX2UKGgGR7/SUedTYNAkaAdLA2gIR0CmOKJAdGRWdX2UKGgGR7/AcPvrnkksaAdLAmgIR0CmOBoBRyfddX2UKGgGR7/FAAQxvegtaAdLAmgIR0CmOGP0RODbdX2UKGgGR7/PQswtapxWaAdLA2gIR0CmOPBkqc3EdX2UKGgGR7/OcI7eVLSNaAdLA2gIR0CmOLPZh8YydX2UKGgGR7/R+otL+PzWaAdLA2gIR0CmOCpu2qkudX2UKGgGR7/Sje9Ba9saaAdLA2gIR0CmOP9/8VHndX2UKGgGR7/NJIUahpQDaAdLBGgIR0CmOHdUjs2OdX2UKGgGR7/JpblijL0SaAdLA2gIR0CmOMBfa6BidX2UKGgGR7/Qyi22G7BgaAdLA2gIR0CmODb5mAbydX2UKGgGR7/QzJZGKAJ+aAdLA2gIR0CmOQ6Jyhi9dX2UKGgGR7/XlkYoAn2JaAdLBGgIR0CmOIqdH2AYdX2UKGgGR7/S77Kq4pc5aAdLA2gIR0CmOEZIH1OCdX2UKGgGR7/Z+ocaOxSpaAdLBGgIR0CmONRLkCFLdX2UKGgGR7+0GqxTsIE9aAdLAmgIR0CmOE67mMfjdX2UKGgGR7/T47ihnJ1aaAdLBGgIR0CmOR/IS13MdX2UKGgGR7/KpSaVlf7aaAdLA2gIR0CmOOQyyleodX2UKGgGR7/Umr8zhxYJaAdLBGgIR0CmOJ/+0gKXdX2UKGgGR7/AmfoRqXWwaAdLAmgIR0CmOFuTJQtSdX2UKGgGR7+VTJhfBvaUaAdLAWgIR0CmOKTj3mFKdX2UKGgGR7/HSBshxHXmaAdLA2gIR0CmOTIJAt4BdX2UKGgGR7/JJf6XSjQBaAdLA2gIR0CmOGlq8DjjdX2UKGgGR7/Y0gbIcR16aAdLBGgIR0CmOPd1loUSdX2UKGgGR7+jYf4h2W6caAdLAWgIR0CmOG30f5k9dX2UKGgGR7/S3wTdtVJdaAdLA2gIR0CmOUGY8dPtdX2UKGgGR7/YMY/FBIFvaAdLBGgIR0CmOLl5v99/dX2UKGgGR7/EG4ZuQ6p6aAdLA2gIR0CmOQbojfNzdX2UKGgGR7/OfV7Qb+98aAdLA2gIR0CmOH2xptaZdX2UKGgGR7/UQmeDnNgSaAdLA2gIR0CmOMaInBtUdX2UKGgGR7/W3JxNqQA/aAdLBGgIR0CmOVM10knkdX2UKGgGR7/J78ejmCAdaAdLA2gIR0CmORYPf8/EdX2UKGgGR7/VMnqmj0tiaAdLA2gIR0CmOIyPuG9IdX2UKGgGR7/BqCYkVvdeaAdLAmgIR0CmOV2c8TzvdX2UKGgGR7+ch1Tzd1uBaAdLAWgIR0CmOJFL39JjdX2UKGgGR7/VUbDMvAXVaAdLBGgIR0CmONpItlI3dX2UKGgGR7/RrxiG34KyaAdLA2gIR0CmOSP+OwPidX2UKGgGR7/T6BiCrcTKaAdLA2gIR0CmOJ63iJfqdX2UKGgGR7/djqOcUdq+aAdLBGgIR0CmOXJmEoOQdX2UKGgGR7/G96kZaV2SaAdLA2gIR0CmOOp9AooedX2UKGgGR7+hemelKsdUaAdLAWgIR0CmOKY3eenRdX2UKGgGR7/WQjlgc94eaAdLA2gIR0CmOTPxpcoqdX2UKGgGR7+m6d1+y7f6aAdLAWgIR0CmOTf9xZMddX2UKGgGR7+7EyckMTewaAdLAmgIR0CmOPMsxwhodX2UKGgGR7/U7tzCDVYqaAdLA2gIR0CmOX+TmnwYdX2UKGgGR7/VR4yGi5/caAdLBGgIR0CmOLb1AZ88dX2UKGgGR7+2cx0uDjBEaAdLAmgIR0CmOYpbMX7+dX2UKGgGR7/N3SKFZgXuaAdLA2gIR0CmOUdXko4NdX2UKGgGR7/feY2Kl54XaAdLBGgIR0CmOQY7ihnKdX2UKGgGR7+3KSxJNCZ4aAdLAmgIR0CmOMHH/95ydX2UKGgGR7/Aws5GSZBtaAdLAmgIR0CmOU+PzWf9dX2UKGgGR7/RBguyu6mPaAdLA2gIR0CmOZbn5i3HdX2UKGgGR7+nWOIZZSvUaAdLAWgIR0CmOVOzhP0qdX2UKGgGR7+jiqABkqc3aAdLAWgIR0CmOVfxc3VDdX2UKGgGR7/HGZuyeI2waAdLA2gIR0CmORNb9qDcdX2UKGgGR7+xnh86V+qjaAdLAmgIR0CmOaIQFs55dX2UKGgGR7/RpHZsbedkaAdLBGgIR0CmONVUEPlNdX2UKGgGR7/AAeaKDTScaAdLAmgIR0CmOWNmL9/CdX2UKGgGR7/TWQfZElVtaAdLA2gIR0CmOSMenyd4dX2UKGgGR7/DewcHWz4UaAdLAmgIR0CmON7Wd3B6dX2UKGgGR7/Ppwjt5UtJaAdLA2gIR0CmOa/ywwCbdX2UKGgGR7/RlU6xPfsNaAdLA2gIR0CmOXDaPCEYdX2UKGgGR7/QCROk+HJtaAdLA2gIR0CmOTJjUd7wdX2UKGgGR7/HI+W4Vh1DaAdLA2gIR0CmOO3xe9i+dX2UKGgGR7+mK8+RoysTaAdLAWgIR0CmOTbW3BpIdX2UKGgGR7/XVQAMlTm5aAdLBGgIR0CmOcODBdledX2UKGgGR7/XC53C9AX3aAdLA2gIR0CmOYBTOxB3dX2UKGgGR7+6sny/bj95aAdLAmgIR0CmOPbBGhEjdX2UKGgGR7/QGIKtxMnJaAdLA2gIR0CmOUO3+dbxdX2UKGgGR7/OlZ5iVjZtaAdLA2gIR0CmOdJ/PPcBdX2UKGgGR7/NI1+AmReUaAdLA2gIR0CmOY95Y5ktdX2UKGgGR7/Kit7rs0HhaAdLA2gIR0CmOQX8n/kvdX2UKGgGR7+9WbPQfIS2aAdLAmgIR0CmOZfR/mT1dX2UKGgGR7/KgFHJ9y93aAdLA2gIR0CmOVNN8E3bdX2UKGgGR7/VsZYPoV2zaAdLBGgIR0CmOePegte2dX2UKGgGR7/B0z0pVjqfaAdLAmgIR0CmOVvWpZOjdX2UKGgGR7/XsFt8/lhgaAdLBGgIR0CmORds7+1jdX2UKGgGR7/T3H7xd6cBaAdLA2gIR0CmOafbblBAdX2UKGgGR7/CiW3Sa3I/aAdLAmgIR0CmOe/tx+8XdX2UKGgGR7+7R2KVII4VaAdLAmgIR0CmOWfOlfqpdX2UKGgGR7/L8n/kvK2baAdLA2gIR0CmOSpOerdWdX2UKGgGR7+2u8scyWRjaAdLAmgIR0CmOfy925hCdX2UKGgGR7/VeAuqWC2+aAdLA2gIR0CmObrUkOZtdX2UKGgGR7/E6pYLb5/LaAdLAmgIR0CmOTZqubI+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (658 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.24764269003644584, "std_reward": 0.11005908738608361, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-21T17:54:56.342975"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60900457d286ed16b76869a197c48e1f804a35a034665526ebd46becca2b4ae3
|
3 |
+
size 2623
|