Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1064 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1064 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:1115700
|
10 |
+
- loss:MatryoshkaLoss
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
base_model: mixedbread-ai/mxbai-embed-large-v1
|
13 |
+
datasets: []
|
14 |
+
metrics:
|
15 |
+
- pearson_cosine
|
16 |
+
- spearman_cosine
|
17 |
+
- pearson_manhattan
|
18 |
+
- spearman_manhattan
|
19 |
+
- pearson_euclidean
|
20 |
+
- spearman_euclidean
|
21 |
+
- pearson_dot
|
22 |
+
- spearman_dot
|
23 |
+
- pearson_max
|
24 |
+
- spearman_max
|
25 |
+
widget:
|
26 |
+
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege.
|
27 |
+
sentences:
|
28 |
+
- Panya anayekimbia juu ya gurudumu.
|
29 |
+
- Mtu anashindana katika mashindano ya mbio.
|
30 |
+
- Ndege anayeruka.
|
31 |
+
- source_sentence: Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia
|
32 |
+
mfuko wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye
|
33 |
+
rangi nyingi.
|
34 |
+
sentences:
|
35 |
+
- Mwanamke mzee anakataa kupigwa picha.
|
36 |
+
- mtu akila na mvulana mdogo kwenye kijia cha jiji
|
37 |
+
- Msichana mchanga anakabili kamera.
|
38 |
+
- source_sentence: Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha
|
39 |
+
watoto wadogo wameketi ndani katika kivuli.
|
40 |
+
sentences:
|
41 |
+
- Mwanamke na watoto na kukaa chini.
|
42 |
+
- Mwanamke huyo anakimbia.
|
43 |
+
- Watu wanasafiri kwa baiskeli.
|
44 |
+
- source_sentence: Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi
|
45 |
+
ya kuogelea akiwa kwenye dimbwi.
|
46 |
+
sentences:
|
47 |
+
- Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye dimbwi.
|
48 |
+
- Someone is holding oranges and walking
|
49 |
+
- Mama na binti wakinunua viatu.
|
50 |
+
- source_sentence: Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa
|
51 |
+
kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi
|
52 |
+
nyuma.
|
53 |
+
sentences:
|
54 |
+
- tai huruka
|
55 |
+
- mwanamume na mwanamke wenye mikoba
|
56 |
+
- Wanaume wawili wameketi karibu na mwanamke.
|
57 |
+
pipeline_tag: sentence-similarity
|
58 |
+
model-index:
|
59 |
+
- name: SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1
|
60 |
+
results:
|
61 |
+
- task:
|
62 |
+
type: semantic-similarity
|
63 |
+
name: Semantic Similarity
|
64 |
+
dataset:
|
65 |
+
name: sts test 768
|
66 |
+
type: sts-test-768
|
67 |
+
metrics:
|
68 |
+
- type: pearson_cosine
|
69 |
+
value: 0.7132706238512434
|
70 |
+
name: Pearson Cosine
|
71 |
+
- type: spearman_cosine
|
72 |
+
value: 0.7051536841043449
|
73 |
+
name: Spearman Cosine
|
74 |
+
- type: pearson_manhattan
|
75 |
+
value: 0.6350557885817543
|
76 |
+
name: Pearson Manhattan
|
77 |
+
- type: spearman_manhattan
|
78 |
+
value: 0.6244954371574937
|
79 |
+
name: Spearman Manhattan
|
80 |
+
- type: pearson_euclidean
|
81 |
+
value: 0.6378177587771076
|
82 |
+
name: Pearson Euclidean
|
83 |
+
- type: spearman_euclidean
|
84 |
+
value: 0.62660657495158
|
85 |
+
name: Spearman Euclidean
|
86 |
+
- type: pearson_dot
|
87 |
+
value: 0.5703890363847545
|
88 |
+
name: Pearson Dot
|
89 |
+
- type: spearman_dot
|
90 |
+
value: 0.5603263508842454
|
91 |
+
name: Spearman Dot
|
92 |
+
- type: pearson_max
|
93 |
+
value: 0.7132706238512434
|
94 |
+
name: Pearson Max
|
95 |
+
- type: spearman_max
|
96 |
+
value: 0.7051536841043449
|
97 |
+
name: Spearman Max
|
98 |
+
- task:
|
99 |
+
type: semantic-similarity
|
100 |
+
name: Semantic Similarity
|
101 |
+
dataset:
|
102 |
+
name: sts test 512
|
103 |
+
type: sts-test-512
|
104 |
+
metrics:
|
105 |
+
- type: pearson_cosine
|
106 |
+
value: 0.7123126668825692
|
107 |
+
name: Pearson Cosine
|
108 |
+
- type: spearman_cosine
|
109 |
+
value: 0.703609966898051
|
110 |
+
name: Spearman Cosine
|
111 |
+
- type: pearson_manhattan
|
112 |
+
value: 0.6388434483972429
|
113 |
+
name: Pearson Manhattan
|
114 |
+
- type: spearman_manhattan
|
115 |
+
value: 0.6281398975795567
|
116 |
+
name: Spearman Manhattan
|
117 |
+
- type: pearson_euclidean
|
118 |
+
value: 0.6419247701070586
|
119 |
+
name: Pearson Euclidean
|
120 |
+
- type: spearman_euclidean
|
121 |
+
value: 0.6310772735048756
|
122 |
+
name: Spearman Euclidean
|
123 |
+
- type: pearson_dot
|
124 |
+
value: 0.5490282729432092
|
125 |
+
name: Pearson Dot
|
126 |
+
- type: spearman_dot
|
127 |
+
value: 0.5413067160939415
|
128 |
+
name: Spearman Dot
|
129 |
+
- type: pearson_max
|
130 |
+
value: 0.7123126668825692
|
131 |
+
name: Pearson Max
|
132 |
+
- type: spearman_max
|
133 |
+
value: 0.703609966898051
|
134 |
+
name: Spearman Max
|
135 |
+
- task:
|
136 |
+
type: semantic-similarity
|
137 |
+
name: Semantic Similarity
|
138 |
+
dataset:
|
139 |
+
name: sts test 256
|
140 |
+
type: sts-test-256
|
141 |
+
metrics:
|
142 |
+
- type: pearson_cosine
|
143 |
+
value: 0.7077861691807766
|
144 |
+
name: Pearson Cosine
|
145 |
+
- type: spearman_cosine
|
146 |
+
value: 0.7000862774499549
|
147 |
+
name: Spearman Cosine
|
148 |
+
- type: pearson_manhattan
|
149 |
+
value: 0.643288835639384
|
150 |
+
name: Pearson Manhattan
|
151 |
+
- type: spearman_manhattan
|
152 |
+
value: 0.6325033715865666
|
153 |
+
name: Spearman Manhattan
|
154 |
+
- type: pearson_euclidean
|
155 |
+
value: 0.6460218727916103
|
156 |
+
name: Pearson Euclidean
|
157 |
+
- type: spearman_euclidean
|
158 |
+
value: 0.6343987601663327
|
159 |
+
name: Spearman Euclidean
|
160 |
+
- type: pearson_dot
|
161 |
+
value: 0.5115397990320991
|
162 |
+
name: Pearson Dot
|
163 |
+
- type: spearman_dot
|
164 |
+
value: 0.5059807217044437
|
165 |
+
name: Spearman Dot
|
166 |
+
- type: pearson_max
|
167 |
+
value: 0.7077861691807766
|
168 |
+
name: Pearson Max
|
169 |
+
- type: spearman_max
|
170 |
+
value: 0.7000862774499549
|
171 |
+
name: Spearman Max
|
172 |
+
- task:
|
173 |
+
type: semantic-similarity
|
174 |
+
name: Semantic Similarity
|
175 |
+
dataset:
|
176 |
+
name: sts test 128
|
177 |
+
type: sts-test-128
|
178 |
+
metrics:
|
179 |
+
- type: pearson_cosine
|
180 |
+
value: 0.7028807205576924
|
181 |
+
name: Pearson Cosine
|
182 |
+
- type: spearman_cosine
|
183 |
+
value: 0.6967519700533644
|
184 |
+
name: Spearman Cosine
|
185 |
+
- type: pearson_manhattan
|
186 |
+
value: 0.6497250338362586
|
187 |
+
name: Pearson Manhattan
|
188 |
+
- type: spearman_manhattan
|
189 |
+
value: 0.6388633921530281
|
190 |
+
name: Spearman Manhattan
|
191 |
+
- type: pearson_euclidean
|
192 |
+
value: 0.650616035583963
|
193 |
+
name: Pearson Euclidean
|
194 |
+
- type: spearman_euclidean
|
195 |
+
value: 0.6388752538429412
|
196 |
+
name: Spearman Euclidean
|
197 |
+
- type: pearson_dot
|
198 |
+
value: 0.473211586813894
|
199 |
+
name: Pearson Dot
|
200 |
+
- type: spearman_dot
|
201 |
+
value: 0.468867985238822
|
202 |
+
name: Spearman Dot
|
203 |
+
- type: pearson_max
|
204 |
+
value: 0.7028807205576924
|
205 |
+
name: Pearson Max
|
206 |
+
- type: spearman_max
|
207 |
+
value: 0.6967519700533644
|
208 |
+
name: Spearman Max
|
209 |
+
- task:
|
210 |
+
type: semantic-similarity
|
211 |
+
name: Semantic Similarity
|
212 |
+
dataset:
|
213 |
+
name: sts test 64
|
214 |
+
type: sts-test-64
|
215 |
+
metrics:
|
216 |
+
- type: pearson_cosine
|
217 |
+
value: 0.6904004410097948
|
218 |
+
name: Pearson Cosine
|
219 |
+
- type: spearman_cosine
|
220 |
+
value: 0.684874855155489
|
221 |
+
name: Spearman Cosine
|
222 |
+
- type: pearson_manhattan
|
223 |
+
value: 0.6498424787891348
|
224 |
+
name: Pearson Manhattan
|
225 |
+
- type: spearman_manhattan
|
226 |
+
value: 0.6359659710580793
|
227 |
+
name: Spearman Manhattan
|
228 |
+
- type: pearson_euclidean
|
229 |
+
value: 0.6513241092538908
|
230 |
+
name: Pearson Euclidean
|
231 |
+
- type: spearman_euclidean
|
232 |
+
value: 0.6369881684130174
|
233 |
+
name: Spearman Euclidean
|
234 |
+
- type: pearson_dot
|
235 |
+
value: 0.42134226096367267
|
236 |
+
name: Pearson Dot
|
237 |
+
- type: spearman_dot
|
238 |
+
value: 0.4179675632105097
|
239 |
+
name: Spearman Dot
|
240 |
+
- type: pearson_max
|
241 |
+
value: 0.6904004410097948
|
242 |
+
name: Pearson Max
|
243 |
+
- type: spearman_max
|
244 |
+
value: 0.684874855155489
|
245 |
+
name: Spearman Max
|
246 |
+
---
|
247 |
+
|
248 |
+
# SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1
|
249 |
+
|
250 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
251 |
+
|
252 |
+
## Model Details
|
253 |
+
|
254 |
+
### Model Description
|
255 |
+
- **Model Type:** Sentence Transformer
|
256 |
+
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision 990580e27d329c7408b3741ecff85876e128e203 -->
|
257 |
+
- **Maximum Sequence Length:** 512 tokens
|
258 |
+
- **Output Dimensionality:** 1024 tokens
|
259 |
+
- **Similarity Function:** Cosine Similarity
|
260 |
+
- **Training Dataset:**
|
261 |
+
- Mollel/swahili-n_li-triplet-swh-eng
|
262 |
+
<!-- - **Language:** Unknown -->
|
263 |
+
<!-- - **License:** Unknown -->
|
264 |
+
|
265 |
+
### Model Sources
|
266 |
+
|
267 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
268 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
269 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
270 |
+
|
271 |
+
### Full Model Architecture
|
272 |
+
|
273 |
+
```
|
274 |
+
SentenceTransformer(
|
275 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
276 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
277 |
+
)
|
278 |
+
```
|
279 |
+
|
280 |
+
## Usage
|
281 |
+
|
282 |
+
### Direct Usage (Sentence Transformers)
|
283 |
+
|
284 |
+
First install the Sentence Transformers library:
|
285 |
+
|
286 |
+
```bash
|
287 |
+
pip install -U sentence-transformers
|
288 |
+
```
|
289 |
+
|
290 |
+
Then you can load this model and run inference.
|
291 |
+
```python
|
292 |
+
from sentence_transformers import SentenceTransformer
|
293 |
+
|
294 |
+
# Download from the 🤗 Hub
|
295 |
+
model = SentenceTransformer("sartifyllc/MultiLinguSwahili-mxbai-embed-large-v1-nli-matryoshka")
|
296 |
+
# Run inference
|
297 |
+
sentences = [
|
298 |
+
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
|
299 |
+
'mwanamume na mwanamke wenye mikoba',
|
300 |
+
'tai huruka',
|
301 |
+
]
|
302 |
+
embeddings = model.encode(sentences)
|
303 |
+
print(embeddings.shape)
|
304 |
+
# [3, 1024]
|
305 |
+
|
306 |
+
# Get the similarity scores for the embeddings
|
307 |
+
similarities = model.similarity(embeddings, embeddings)
|
308 |
+
print(similarities.shape)
|
309 |
+
# [3, 3]
|
310 |
+
```
|
311 |
+
|
312 |
+
<!--
|
313 |
+
### Direct Usage (Transformers)
|
314 |
+
|
315 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
316 |
+
|
317 |
+
</details>
|
318 |
+
-->
|
319 |
+
|
320 |
+
<!--
|
321 |
+
### Downstream Usage (Sentence Transformers)
|
322 |
+
|
323 |
+
You can finetune this model on your own dataset.
|
324 |
+
|
325 |
+
<details><summary>Click to expand</summary>
|
326 |
+
|
327 |
+
</details>
|
328 |
+
-->
|
329 |
+
|
330 |
+
<!--
|
331 |
+
### Out-of-Scope Use
|
332 |
+
|
333 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
334 |
+
-->
|
335 |
+
|
336 |
+
## Evaluation
|
337 |
+
|
338 |
+
### Metrics
|
339 |
+
|
340 |
+
#### Semantic Similarity
|
341 |
+
* Dataset: `sts-test-768`
|
342 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
343 |
+
|
344 |
+
| Metric | Value |
|
345 |
+
|:--------------------|:-----------|
|
346 |
+
| pearson_cosine | 0.7133 |
|
347 |
+
| **spearman_cosine** | **0.7052** |
|
348 |
+
| pearson_manhattan | 0.6351 |
|
349 |
+
| spearman_manhattan | 0.6245 |
|
350 |
+
| pearson_euclidean | 0.6378 |
|
351 |
+
| spearman_euclidean | 0.6266 |
|
352 |
+
| pearson_dot | 0.5704 |
|
353 |
+
| spearman_dot | 0.5603 |
|
354 |
+
| pearson_max | 0.7133 |
|
355 |
+
| spearman_max | 0.7052 |
|
356 |
+
|
357 |
+
#### Semantic Similarity
|
358 |
+
* Dataset: `sts-test-512`
|
359 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
360 |
+
|
361 |
+
| Metric | Value |
|
362 |
+
|:--------------------|:-----------|
|
363 |
+
| pearson_cosine | 0.7123 |
|
364 |
+
| **spearman_cosine** | **0.7036** |
|
365 |
+
| pearson_manhattan | 0.6388 |
|
366 |
+
| spearman_manhattan | 0.6281 |
|
367 |
+
| pearson_euclidean | 0.6419 |
|
368 |
+
| spearman_euclidean | 0.6311 |
|
369 |
+
| pearson_dot | 0.549 |
|
370 |
+
| spearman_dot | 0.5413 |
|
371 |
+
| pearson_max | 0.7123 |
|
372 |
+
| spearman_max | 0.7036 |
|
373 |
+
|
374 |
+
#### Semantic Similarity
|
375 |
+
* Dataset: `sts-test-256`
|
376 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
377 |
+
|
378 |
+
| Metric | Value |
|
379 |
+
|:--------------------|:-----------|
|
380 |
+
| pearson_cosine | 0.7078 |
|
381 |
+
| **spearman_cosine** | **0.7001** |
|
382 |
+
| pearson_manhattan | 0.6433 |
|
383 |
+
| spearman_manhattan | 0.6325 |
|
384 |
+
| pearson_euclidean | 0.646 |
|
385 |
+
| spearman_euclidean | 0.6344 |
|
386 |
+
| pearson_dot | 0.5115 |
|
387 |
+
| spearman_dot | 0.506 |
|
388 |
+
| pearson_max | 0.7078 |
|
389 |
+
| spearman_max | 0.7001 |
|
390 |
+
|
391 |
+
#### Semantic Similarity
|
392 |
+
* Dataset: `sts-test-128`
|
393 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
394 |
+
|
395 |
+
| Metric | Value |
|
396 |
+
|:--------------------|:-----------|
|
397 |
+
| pearson_cosine | 0.7029 |
|
398 |
+
| **spearman_cosine** | **0.6968** |
|
399 |
+
| pearson_manhattan | 0.6497 |
|
400 |
+
| spearman_manhattan | 0.6389 |
|
401 |
+
| pearson_euclidean | 0.6506 |
|
402 |
+
| spearman_euclidean | 0.6389 |
|
403 |
+
| pearson_dot | 0.4732 |
|
404 |
+
| spearman_dot | 0.4689 |
|
405 |
+
| pearson_max | 0.7029 |
|
406 |
+
| spearman_max | 0.6968 |
|
407 |
+
|
408 |
+
#### Semantic Similarity
|
409 |
+
* Dataset: `sts-test-64`
|
410 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
411 |
+
|
412 |
+
| Metric | Value |
|
413 |
+
|:--------------------|:-----------|
|
414 |
+
| pearson_cosine | 0.6904 |
|
415 |
+
| **spearman_cosine** | **0.6849** |
|
416 |
+
| pearson_manhattan | 0.6498 |
|
417 |
+
| spearman_manhattan | 0.636 |
|
418 |
+
| pearson_euclidean | 0.6513 |
|
419 |
+
| spearman_euclidean | 0.637 |
|
420 |
+
| pearson_dot | 0.4213 |
|
421 |
+
| spearman_dot | 0.418 |
|
422 |
+
| pearson_max | 0.6904 |
|
423 |
+
| spearman_max | 0.6849 |
|
424 |
+
|
425 |
+
<!--
|
426 |
+
## Bias, Risks and Limitations
|
427 |
+
|
428 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
429 |
+
-->
|
430 |
+
|
431 |
+
<!--
|
432 |
+
### Recommendations
|
433 |
+
|
434 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
435 |
+
-->
|
436 |
+
|
437 |
+
## Training Details
|
438 |
+
|
439 |
+
### Training Dataset
|
440 |
+
|
441 |
+
#### Mollel/swahili-n_li-triplet-swh-eng
|
442 |
+
|
443 |
+
* Dataset: Mollel/swahili-n_li-triplet-swh-eng
|
444 |
+
* Size: 1,115,700 training samples
|
445 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
446 |
+
* Approximate statistics based on the first 1000 samples:
|
447 |
+
| | anchor | positive | negative |
|
448 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
449 |
+
| type | string | string | string |
|
450 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 15.18 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.53 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.8 tokens</li><li>max: 53 tokens</li></ul> |
|
451 |
+
* Samples:
|
452 |
+
| anchor | positive | negative |
|
453 |
+
|:----------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------------------|
|
454 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
455 |
+
| <code>Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika.</code> | <code>Mtu yuko nje, juu ya farasi.</code> | <code>Mtu yuko kwenye mkahawa, akiagiza omelette.</code> |
|
456 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
457 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
458 |
+
```json
|
459 |
+
{
|
460 |
+
"loss": "MultipleNegativesRankingLoss",
|
461 |
+
"matryoshka_dims": [
|
462 |
+
768,
|
463 |
+
512,
|
464 |
+
256,
|
465 |
+
128,
|
466 |
+
64
|
467 |
+
],
|
468 |
+
"matryoshka_weights": [
|
469 |
+
1,
|
470 |
+
1,
|
471 |
+
1,
|
472 |
+
1,
|
473 |
+
1
|
474 |
+
],
|
475 |
+
"n_dims_per_step": -1
|
476 |
+
}
|
477 |
+
```
|
478 |
+
|
479 |
+
### Evaluation Dataset
|
480 |
+
|
481 |
+
#### Mollel/swahili-n_li-triplet-swh-eng
|
482 |
+
|
483 |
+
* Dataset: Mollel/swahili-n_li-triplet-swh-eng
|
484 |
+
* Size: 13,168 evaluation samples
|
485 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
486 |
+
* Approximate statistics based on the first 1000 samples:
|
487 |
+
| | anchor | positive | negative |
|
488 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
489 |
+
| type | string | string | string |
|
490 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 26.43 tokens</li><li>max: 94 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.37 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.7 tokens</li><li>max: 54 tokens</li></ul> |
|
491 |
+
* Samples:
|
492 |
+
| anchor | positive | negative |
|
493 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:-------------------------------------------------------------------|
|
494 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
495 |
+
| <code>Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda.</code> | <code>Wanawake wawili wanashikilia vifurushi.</code> | <code>Wanaume hao wanapigana nje ya duka la vyakula vitamu.</code> |
|
496 |
+
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
497 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
498 |
+
```json
|
499 |
+
{
|
500 |
+
"loss": "MultipleNegativesRankingLoss",
|
501 |
+
"matryoshka_dims": [
|
502 |
+
768,
|
503 |
+
512,
|
504 |
+
256,
|
505 |
+
128,
|
506 |
+
64
|
507 |
+
],
|
508 |
+
"matryoshka_weights": [
|
509 |
+
1,
|
510 |
+
1,
|
511 |
+
1,
|
512 |
+
1,
|
513 |
+
1
|
514 |
+
],
|
515 |
+
"n_dims_per_step": -1
|
516 |
+
}
|
517 |
+
```
|
518 |
+
|
519 |
+
### Training Hyperparameters
|
520 |
+
#### Non-Default Hyperparameters
|
521 |
+
|
522 |
+
- `per_device_train_batch_size`: 16
|
523 |
+
- `per_device_eval_batch_size`: 16
|
524 |
+
- `learning_rate`: 2e-05
|
525 |
+
- `num_train_epochs`: 1
|
526 |
+
- `warmup_ratio`: 0.1
|
527 |
+
- `bf16`: True
|
528 |
+
- `batch_sampler`: no_duplicates
|
529 |
+
|
530 |
+
#### All Hyperparameters
|
531 |
+
<details><summary>Click to expand</summary>
|
532 |
+
|
533 |
+
- `overwrite_output_dir`: False
|
534 |
+
- `do_predict`: False
|
535 |
+
- `prediction_loss_only`: True
|
536 |
+
- `per_device_train_batch_size`: 16
|
537 |
+
- `per_device_eval_batch_size`: 16
|
538 |
+
- `per_gpu_train_batch_size`: None
|
539 |
+
- `per_gpu_eval_batch_size`: None
|
540 |
+
- `gradient_accumulation_steps`: 1
|
541 |
+
- `eval_accumulation_steps`: None
|
542 |
+
- `learning_rate`: 2e-05
|
543 |
+
- `weight_decay`: 0.0
|
544 |
+
- `adam_beta1`: 0.9
|
545 |
+
- `adam_beta2`: 0.999
|
546 |
+
- `adam_epsilon`: 1e-08
|
547 |
+
- `max_grad_norm`: 1.0
|
548 |
+
- `num_train_epochs`: 1
|
549 |
+
- `max_steps`: -1
|
550 |
+
- `lr_scheduler_type`: linear
|
551 |
+
- `lr_scheduler_kwargs`: {}
|
552 |
+
- `warmup_ratio`: 0.1
|
553 |
+
- `warmup_steps`: 0
|
554 |
+
- `log_level`: passive
|
555 |
+
- `log_level_replica`: warning
|
556 |
+
- `log_on_each_node`: True
|
557 |
+
- `logging_nan_inf_filter`: True
|
558 |
+
- `save_safetensors`: True
|
559 |
+
- `save_on_each_node`: False
|
560 |
+
- `save_only_model`: False
|
561 |
+
- `no_cuda`: False
|
562 |
+
- `use_cpu`: False
|
563 |
+
- `use_mps_device`: False
|
564 |
+
- `seed`: 42
|
565 |
+
- `data_seed`: None
|
566 |
+
- `jit_mode_eval`: False
|
567 |
+
- `use_ipex`: False
|
568 |
+
- `bf16`: True
|
569 |
+
- `fp16`: False
|
570 |
+
- `fp16_opt_level`: O1
|
571 |
+
- `half_precision_backend`: auto
|
572 |
+
- `bf16_full_eval`: False
|
573 |
+
- `fp16_full_eval`: False
|
574 |
+
- `tf32`: None
|
575 |
+
- `local_rank`: 0
|
576 |
+
- `ddp_backend`: None
|
577 |
+
- `tpu_num_cores`: None
|
578 |
+
- `tpu_metrics_debug`: False
|
579 |
+
- `debug`: []
|
580 |
+
- `dataloader_drop_last`: False
|
581 |
+
- `dataloader_num_workers`: 0
|
582 |
+
- `dataloader_prefetch_factor`: None
|
583 |
+
- `past_index`: -1
|
584 |
+
- `disable_tqdm`: False
|
585 |
+
- `remove_unused_columns`: True
|
586 |
+
- `label_names`: None
|
587 |
+
- `load_best_model_at_end`: False
|
588 |
+
- `ignore_data_skip`: False
|
589 |
+
- `fsdp`: []
|
590 |
+
- `fsdp_min_num_params`: 0
|
591 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
592 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
593 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
|
594 |
+
- `deepspeed`: None
|
595 |
+
- `label_smoothing_factor`: 0.0
|
596 |
+
- `optim`: adamw_torch
|
597 |
+
- `optim_args`: None
|
598 |
+
- `adafactor`: False
|
599 |
+
- `group_by_length`: False
|
600 |
+
- `length_column_name`: length
|
601 |
+
- `ddp_find_unused_parameters`: None
|
602 |
+
- `ddp_bucket_cap_mb`: None
|
603 |
+
- `ddp_broadcast_buffers`: False
|
604 |
+
- `dataloader_pin_memory`: True
|
605 |
+
- `dataloader_persistent_workers`: False
|
606 |
+
- `skip_memory_metrics`: True
|
607 |
+
- `use_legacy_prediction_loop`: False
|
608 |
+
- `push_to_hub`: False
|
609 |
+
- `resume_from_checkpoint`: None
|
610 |
+
- `hub_model_id`: None
|
611 |
+
- `hub_strategy`: every_save
|
612 |
+
- `hub_private_repo`: False
|
613 |
+
- `hub_always_push`: False
|
614 |
+
- `gradient_checkpointing`: False
|
615 |
+
- `gradient_checkpointing_kwargs`: None
|
616 |
+
- `include_inputs_for_metrics`: False
|
617 |
+
- `eval_do_concat_batches`: True
|
618 |
+
- `fp16_backend`: auto
|
619 |
+
- `push_to_hub_model_id`: None
|
620 |
+
- `push_to_hub_organization`: None
|
621 |
+
- `mp_parameters`:
|
622 |
+
- `auto_find_batch_size`: False
|
623 |
+
- `full_determinism`: False
|
624 |
+
- `torchdynamo`: None
|
625 |
+
- `ray_scope`: last
|
626 |
+
- `ddp_timeout`: 1800
|
627 |
+
- `torch_compile`: False
|
628 |
+
- `torch_compile_backend`: None
|
629 |
+
- `torch_compile_mode`: None
|
630 |
+
- `dispatch_batches`: None
|
631 |
+
- `split_batches`: None
|
632 |
+
- `include_tokens_per_second`: False
|
633 |
+
- `include_num_input_tokens_seen`: False
|
634 |
+
- `neftune_noise_alpha`: None
|
635 |
+
- `optim_target_modules`: None
|
636 |
+
- `batch_sampler`: no_duplicates
|
637 |
+
- `multi_dataset_batch_sampler`: proportional
|
638 |
+
|
639 |
+
</details>
|
640 |
+
|
641 |
+
### Training Logs
|
642 |
+
<details><summary>Click to expand</summary>
|
643 |
+
|
644 |
+
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|
645 |
+
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
|
646 |
+
| 0.0029 | 100 | 9.6293 | - | - | - | - | - |
|
647 |
+
| 0.0057 | 200 | 8.1059 | - | - | - | - | - |
|
648 |
+
| 0.0086 | 300 | 8.6054 | - | - | - | - | - |
|
649 |
+
| 0.0115 | 400 | 6.8896 | - | - | - | - | - |
|
650 |
+
| 0.0143 | 500 | 6.9096 | - | - | - | - | - |
|
651 |
+
| 0.0172 | 600 | 6.7797 | - | - | - | - | - |
|
652 |
+
| 0.0201 | 700 | 6.8013 | - | - | - | - | - |
|
653 |
+
| 0.0229 | 800 | 7.49 | - | - | - | - | - |
|
654 |
+
| 0.0258 | 900 | 7.2888 | - | - | - | - | - |
|
655 |
+
| 0.0287 | 1000 | 7.3862 | - | - | - | - | - |
|
656 |
+
| 0.0315 | 1100 | 6.8292 | - | - | - | - | - |
|
657 |
+
| 0.0344 | 1200 | 6.2505 | - | - | - | - | - |
|
658 |
+
| 0.0373 | 1300 | 4.8736 | - | - | - | - | - |
|
659 |
+
| 0.0402 | 1400 | 4.7668 | - | - | - | - | - |
|
660 |
+
| 0.0430 | 1500 | 5.0843 | - | - | - | - | - |
|
661 |
+
| 0.0459 | 1600 | 3.8507 | - | - | - | - | - |
|
662 |
+
| 0.0488 | 1700 | 5.1235 | - | - | - | - | - |
|
663 |
+
| 0.0516 | 1800 | 4.6187 | - | - | - | - | - |
|
664 |
+
| 0.0545 | 1900 | 3.8704 | - | - | - | - | - |
|
665 |
+
| 0.0574 | 2000 | 3.3635 | - | - | - | - | - |
|
666 |
+
| 0.0602 | 2100 | 3.4204 | - | - | - | - | - |
|
667 |
+
| 0.0631 | 2200 | 3.5258 | - | - | - | - | - |
|
668 |
+
| 0.0660 | 2300 | 3.6726 | - | - | - | - | - |
|
669 |
+
| 0.0688 | 2400 | 3.8007 | - | - | - | - | - |
|
670 |
+
| 0.0717 | 2500 | 3.5593 | - | - | - | - | - |
|
671 |
+
| 0.0746 | 2600 | 3.3407 | - | - | - | - | - |
|
672 |
+
| 0.0774 | 2700 | 4.6645 | - | - | - | - | - |
|
673 |
+
| 0.0803 | 2800 | 4.5431 | - | - | - | - | - |
|
674 |
+
| 0.0832 | 2900 | 4.0496 | - | - | - | - | - |
|
675 |
+
| 0.0860 | 3000 | 3.8313 | - | - | - | - | - |
|
676 |
+
| 0.0889 | 3100 | 3.6324 | - | - | - | - | - |
|
677 |
+
| 0.0918 | 3200 | 3.3442 | - | - | - | - | - |
|
678 |
+
| 0.0946 | 3300 | 2.9437 | - | - | - | - | - |
|
679 |
+
| 0.0975 | 3400 | 2.8352 | - | - | - | - | - |
|
680 |
+
| 0.1004 | 3500 | 2.8069 | - | - | - | - | - |
|
681 |
+
| 0.1033 | 3600 | 2.9686 | - | - | - | - | - |
|
682 |
+
| 0.1061 | 3700 | 2.8355 | - | - | - | - | - |
|
683 |
+
| 0.1090 | 3800 | 2.9827 | - | - | - | - | - |
|
684 |
+
| 0.1119 | 3900 | 3.1181 | - | - | - | - | - |
|
685 |
+
| 0.1147 | 4000 | 4.1636 | - | - | - | - | - |
|
686 |
+
| 0.1176 | 4100 | 5.4112 | - | - | - | - | - |
|
687 |
+
| 0.1205 | 4200 | 5.3505 | - | - | - | - | - |
|
688 |
+
| 0.1233 | 4300 | 3.8779 | - | - | - | - | - |
|
689 |
+
| 0.1262 | 4400 | 3.7439 | - | - | - | - | - |
|
690 |
+
| 0.1291 | 4500 | 3.3232 | - | - | - | - | - |
|
691 |
+
| 0.1319 | 4600 | 3.6257 | - | - | - | - | - |
|
692 |
+
| 0.1348 | 4700 | 3.8231 | - | - | - | - | - |
|
693 |
+
| 0.1377 | 4800 | 3.4048 | - | - | - | - | - |
|
694 |
+
| 0.1405 | 4900 | 3.0996 | - | - | - | - | - |
|
695 |
+
| 0.1434 | 5000 | 3.386 | - | - | - | - | - |
|
696 |
+
| 0.1463 | 5100 | 2.8902 | - | - | - | - | - |
|
697 |
+
| 0.1491 | 5200 | 3.2461 | - | - | - | - | - |
|
698 |
+
| 0.1520 | 5300 | 2.6888 | - | - | - | - | - |
|
699 |
+
| 0.1549 | 5400 | 3.2005 | - | - | - | - | - |
|
700 |
+
| 0.1577 | 5500 | 3.1291 | - | - | - | - | - |
|
701 |
+
| 0.1606 | 5600 | 2.993 | - | - | - | - | - |
|
702 |
+
| 0.1635 | 5700 | 3.3405 | - | - | - | - | - |
|
703 |
+
| 0.1664 | 5800 | 3.3929 | - | - | - | - | - |
|
704 |
+
| 0.1692 | 5900 | 4.0071 | - | - | - | - | - |
|
705 |
+
| 0.1721 | 6000 | 3.8775 | - | - | - | - | - |
|
706 |
+
| 0.1750 | 6100 | 4.0725 | - | - | - | - | - |
|
707 |
+
| 0.1778 | 6200 | 4.3434 | - | - | - | - | - |
|
708 |
+
| 0.1807 | 6300 | 4.0734 | - | - | - | - | - |
|
709 |
+
| 0.1836 | 6400 | 3.805 | - | - | - | - | - |
|
710 |
+
| 0.1864 | 6500 | 3.9273 | - | - | - | - | - |
|
711 |
+
| 0.1893 | 6600 | 3.9514 | - | - | - | - | - |
|
712 |
+
| 0.1922 | 6700 | 3.8316 | - | - | - | - | - |
|
713 |
+
| 0.1950 | 6800 | 3.2888 | - | - | - | - | - |
|
714 |
+
| 0.1979 | 6900 | 3.4367 | - | - | - | - | - |
|
715 |
+
| 0.2008 | 7000 | 3.0205 | - | - | - | - | - |
|
716 |
+
| 0.2036 | 7100 | 3.404 | - | - | - | - | - |
|
717 |
+
| 0.2065 | 7200 | 3.225 | - | - | - | - | - |
|
718 |
+
| 0.2094 | 7300 | 3.8446 | - | - | - | - | - |
|
719 |
+
| 0.2122 | 7400 | 3.2551 | - | - | - | - | - |
|
720 |
+
| 0.2151 | 7500 | 3.35 | - | - | - | - | - |
|
721 |
+
| 0.2180 | 7600 | 3.5524 | - | - | - | - | - |
|
722 |
+
| 0.2208 | 7700 | 3.7775 | - | - | - | - | - |
|
723 |
+
| 0.2237 | 7800 | 3.2797 | - | - | - | - | - |
|
724 |
+
| 0.2266 | 7900 | 3.96 | - | - | - | - | - |
|
725 |
+
| 0.2294 | 8000 | 3.7124 | - | - | - | - | - |
|
726 |
+
| 0.2323 | 8100 | 3.2713 | - | - | - | - | - |
|
727 |
+
| 0.2352 | 8200 | 3.8838 | - | - | - | - | - |
|
728 |
+
| 0.2381 | 8300 | 3.3932 | - | - | - | - | - |
|
729 |
+
| 0.2409 | 8400 | 3.3798 | - | - | - | - | - |
|
730 |
+
| 0.2438 | 8500 | 3.2386 | - | - | - | - | - |
|
731 |
+
| 0.2467 | 8600 | 3.1264 | - | - | - | - | - |
|
732 |
+
| 0.2495 | 8700 | 3.9248 | - | - | - | - | - |
|
733 |
+
| 0.2524 | 8800 | 3.5402 | - | - | - | - | - |
|
734 |
+
| 0.2553 | 8900 | 3.688 | - | - | - | - | - |
|
735 |
+
| 0.2581 | 9000 | 4.0903 | - | - | - | - | - |
|
736 |
+
| 0.2610 | 9100 | 4.4358 | - | - | - | - | - |
|
737 |
+
| 0.2639 | 9200 | 4.1334 | - | - | - | - | - |
|
738 |
+
| 0.2667 | 9300 | 3.4894 | - | - | - | - | - |
|
739 |
+
| 0.2696 | 9400 | 4.0032 | - | - | - | - | - |
|
740 |
+
| 0.2725 | 9500 | 4.1421 | - | - | - | - | - |
|
741 |
+
| 0.2753 | 9600 | 3.6995 | - | - | - | - | - |
|
742 |
+
| 0.2782 | 9700 | 3.8307 | - | - | - | - | - |
|
743 |
+
| 0.2811 | 9800 | 3.7448 | - | - | - | - | - |
|
744 |
+
| 0.2839 | 9900 | 3.6962 | - | - | - | - | - |
|
745 |
+
| 0.2868 | 10000 | 3.3733 | - | - | - | - | - |
|
746 |
+
| 0.2897 | 10100 | 3.4597 | - | - | - | - | - |
|
747 |
+
| 0.2925 | 10200 | 3.6834 | - | - | - | - | - |
|
748 |
+
| 0.2954 | 10300 | 3.7873 | - | - | - | - | - |
|
749 |
+
| 0.2983 | 10400 | 3.1388 | - | - | - | - | - |
|
750 |
+
| 0.3012 | 10500 | 3.9492 | - | - | - | - | - |
|
751 |
+
| 0.3040 | 10600 | 3.5991 | - | - | - | - | - |
|
752 |
+
| 0.3069 | 10700 | 4.2448 | - | - | - | - | - |
|
753 |
+
| 0.3098 | 10800 | 3.92 | - | - | - | - | - |
|
754 |
+
| 0.3126 | 10900 | 3.8442 | - | - | - | - | - |
|
755 |
+
| 0.3155 | 11000 | 4.3227 | - | - | - | - | - |
|
756 |
+
| 0.3184 | 11100 | 3.6447 | - | - | - | - | - |
|
757 |
+
| 0.3212 | 11200 | 3.8106 | - | - | - | - | - |
|
758 |
+
| 0.3241 | 11300 | 3.3499 | - | - | - | - | - |
|
759 |
+
| 0.3270 | 11400 | 3.8586 | - | - | - | - | - |
|
760 |
+
| 0.3298 | 11500 | 3.4284 | - | - | - | - | - |
|
761 |
+
| 0.3327 | 11600 | 3.2439 | - | - | - | - | - |
|
762 |
+
| 0.3356 | 11700 | 3.6645 | - | - | - | - | - |
|
763 |
+
| 0.3384 | 11800 | 3.9315 | - | - | - | - | - |
|
764 |
+
| 0.3413 | 11900 | 3.6439 | - | - | - | - | - |
|
765 |
+
| 0.3442 | 12000 | 3.6706 | - | - | - | - | - |
|
766 |
+
| 0.3470 | 12100 | 3.5084 | - | - | - | - | - |
|
767 |
+
| 0.3499 | 12200 | 3.9352 | - | - | - | - | - |
|
768 |
+
| 0.3528 | 12300 | 3.7615 | - | - | - | - | - |
|
769 |
+
| 0.3556 | 12400 | 3.7642 | - | - | - | - | - |
|
770 |
+
| 0.3585 | 12500 | 3.8085 | - | - | - | - | - |
|
771 |
+
| 0.3614 | 12600 | 3.411 | - | - | - | - | - |
|
772 |
+
| 0.3643 | 12700 | 3.8521 | - | - | - | - | - |
|
773 |
+
| 0.3671 | 12800 | 3.5473 | - | - | - | - | - |
|
774 |
+
| 0.3700 | 12900 | 3.5322 | - | - | - | - | - |
|
775 |
+
| 0.3729 | 13000 | 3.1496 | - | - | - | - | - |
|
776 |
+
| 0.3757 | 13100 | 3.5285 | - | - | - | - | - |
|
777 |
+
| 0.3786 | 13200 | 4.4428 | - | - | - | - | - |
|
778 |
+
| 0.3815 | 13300 | 3.4391 | - | - | - | - | - |
|
779 |
+
| 0.3843 | 13400 | 3.6457 | - | - | - | - | - |
|
780 |
+
| 0.3872 | 13500 | 3.2051 | - | - | - | - | - |
|
781 |
+
| 0.3901 | 13600 | 3.3738 | - | - | - | - | - |
|
782 |
+
| 0.3929 | 13700 | 3.5465 | - | - | - | - | - |
|
783 |
+
| 0.3958 | 13800 | 3.5853 | - | - | - | - | - |
|
784 |
+
| 0.3987 | 13900 | 3.297 | - | - | - | - | - |
|
785 |
+
| 0.4015 | 14000 | 3.3994 | - | - | - | - | - |
|
786 |
+
| 0.4044 | 14100 | 3.542 | - | - | - | - | - |
|
787 |
+
| 0.4073 | 14200 | 3.8516 | - | - | - | - | - |
|
788 |
+
| 0.4101 | 14300 | 3.6002 | - | - | - | - | - |
|
789 |
+
| 0.4130 | 14400 | 3.7251 | - | - | - | - | - |
|
790 |
+
| 0.4159 | 14500 | 3.4421 | - | - | - | - | - |
|
791 |
+
| 0.4187 | 14600 | 3.365 | - | - | - | - | - |
|
792 |
+
| 0.4216 | 14700 | 3.5327 | - | - | - | - | - |
|
793 |
+
| 0.4245 | 14800 | 3.1557 | - | - | - | - | - |
|
794 |
+
| 0.4274 | 14900 | 3.7096 | - | - | - | - | - |
|
795 |
+
| 0.4302 | 15000 | 3.9073 | - | - | - | - | - |
|
796 |
+
| 0.4331 | 15100 | 3.2662 | - | - | - | - | - |
|
797 |
+
| 0.4360 | 15200 | 3.3979 | - | - | - | - | - |
|
798 |
+
| 0.4388 | 15300 | 3.1515 | - | - | - | - | - |
|
799 |
+
| 0.4417 | 15400 | 3.247 | - | - | - | - | - |
|
800 |
+
| 0.4446 | 15500 | 3.3723 | - | - | - | - | - |
|
801 |
+
| 0.4474 | 15600 | 3.6837 | - | - | - | - | - |
|
802 |
+
| 0.4503 | 15700 | 3.4302 | - | - | - | - | - |
|
803 |
+
| 0.4532 | 15800 | 3.8231 | - | - | - | - | - |
|
804 |
+
| 0.4560 | 15900 | 3.1679 | - | - | - | - | - |
|
805 |
+
| 0.4589 | 16000 | 3.2766 | - | - | - | - | - |
|
806 |
+
| 0.4618 | 16100 | 3.3 | - | - | - | - | - |
|
807 |
+
| 0.4646 | 16200 | 3.557 | - | - | - | - | - |
|
808 |
+
| 0.4675 | 16300 | 3.5876 | - | - | - | - | - |
|
809 |
+
| 0.4704 | 16400 | 3.0928 | - | - | - | - | - |
|
810 |
+
| 0.4732 | 16500 | 2.9105 | - | - | - | - | - |
|
811 |
+
| 0.4761 | 16600 | 3.254 | - | - | - | - | - |
|
812 |
+
| 0.4790 | 16700 | 3.8005 | - | - | - | - | - |
|
813 |
+
| 0.4818 | 16800 | 3.1539 | - | - | - | - | - |
|
814 |
+
| 0.4847 | 16900 | 3.0174 | - | - | - | - | - |
|
815 |
+
| 0.4876 | 17000 | 3.4317 | - | - | - | - | - |
|
816 |
+
| 0.4904 | 17100 | 3.6292 | - | - | - | - | - |
|
817 |
+
| 0.4933 | 17200 | 3.7037 | - | - | - | - | - |
|
818 |
+
| 0.4962 | 17300 | 3.5144 | - | - | - | - | - |
|
819 |
+
| 0.4991 | 17400 | 3.7012 | - | - | - | - | - |
|
820 |
+
| 0.5019 | 17500 | 3.2587 | - | - | - | - | - |
|
821 |
+
| 0.5048 | 17600 | 3.1335 | - | - | - | - | - |
|
822 |
+
| 0.5077 | 17700 | 3.4027 | - | - | - | - | - |
|
823 |
+
| 0.5105 | 17800 | 3.6637 | - | - | - | - | - |
|
824 |
+
| 0.5134 | 17900 | 3.1682 | - | - | - | - | - |
|
825 |
+
| 0.5163 | 18000 | 3.2303 | - | - | - | - | - |
|
826 |
+
| 0.5191 | 18100 | 3.2155 | - | - | - | - | - |
|
827 |
+
| 0.5220 | 18200 | 3.431 | - | - | - | - | - |
|
828 |
+
| 0.5249 | 18300 | 3.1019 | - | - | - | - | - |
|
829 |
+
| 0.5277 | 18400 | 3.5245 | - | - | - | - | - |
|
830 |
+
| 0.5306 | 18500 | 3.1072 | - | - | - | - | - |
|
831 |
+
| 0.5335 | 18600 | 2.9673 | - | - | - | - | - |
|
832 |
+
| 0.5363 | 18700 | 3.0401 | - | - | - | - | - |
|
833 |
+
| 0.5392 | 18800 | 3.0617 | - | - | - | - | - |
|
834 |
+
| 0.5421 | 18900 | 3.6658 | - | - | - | - | - |
|
835 |
+
| 0.5449 | 19000 | 3.5137 | - | - | - | - | - |
|
836 |
+
| 0.5478 | 19100 | 3.5897 | - | - | - | - | - |
|
837 |
+
| 0.5507 | 19200 | 2.8309 | - | - | - | - | - |
|
838 |
+
| 0.5535 | 19300 | 3.7047 | - | - | - | - | - |
|
839 |
+
| 0.5564 | 19400 | 3.3343 | - | - | - | - | - |
|
840 |
+
| 0.5593 | 19500 | 3.3689 | - | - | - | - | - |
|
841 |
+
| 0.5622 | 19600 | 3.1783 | - | - | - | - | - |
|
842 |
+
| 0.5650 | 19700 | 3.6135 | - | - | - | - | - |
|
843 |
+
| 0.5679 | 19800 | 3.5106 | - | - | - | - | - |
|
844 |
+
| 0.5708 | 19900 | 3.8416 | - | - | - | - | - |
|
845 |
+
| 0.5736 | 20000 | 3.1559 | - | - | - | - | - |
|
846 |
+
| 0.5765 | 20100 | 3.2931 | - | - | - | - | - |
|
847 |
+
| 0.5794 | 20200 | 3.2411 | - | - | - | - | - |
|
848 |
+
| 0.5822 | 20300 | 3.5898 | - | - | - | - | - |
|
849 |
+
| 0.5851 | 20400 | 3.2916 | - | - | - | - | - |
|
850 |
+
| 0.5880 | 20500 | 3.619 | - | - | - | - | - |
|
851 |
+
| 0.5908 | 20600 | 3.8023 | - | - | - | - | - |
|
852 |
+
| 0.5937 | 20700 | 3.1023 | - | - | - | - | - |
|
853 |
+
| 0.5966 | 20800 | 3.2682 | - | - | - | - | - |
|
854 |
+
| 0.5994 | 20900 | 2.9783 | - | - | - | - | - |
|
855 |
+
| 0.6023 | 21000 | 3.1373 | - | - | - | - | - |
|
856 |
+
| 0.6052 | 21100 | 3.5358 | - | - | - | - | - |
|
857 |
+
| 0.6080 | 21200 | 3.2374 | - | - | - | - | - |
|
858 |
+
| 0.6109 | 21300 | 3.6793 | - | - | - | - | - |
|
859 |
+
| 0.6138 | 21400 | 3.388 | - | - | - | - | - |
|
860 |
+
| 0.6166 | 21500 | 3.1295 | - | - | - | - | - |
|
861 |
+
| 0.6195 | 21600 | 3.7971 | - | - | - | - | - |
|
862 |
+
| 0.6224 | 21700 | 3.4638 | - | - | - | - | - |
|
863 |
+
| 0.6253 | 21800 | 3.1254 | - | - | - | - | - |
|
864 |
+
| 0.6281 | 21900 | 3.705 | - | - | - | - | - |
|
865 |
+
| 0.6310 | 22000 | 2.9319 | - | - | - | - | - |
|
866 |
+
| 0.6339 | 22100 | 3.6908 | - | - | - | - | - |
|
867 |
+
| 0.6367 | 22200 | 3.3938 | - | - | - | - | - |
|
868 |
+
| 0.6396 | 22300 | 3.389 | - | - | - | - | - |
|
869 |
+
| 0.6425 | 22400 | 2.9946 | - | - | - | - | - |
|
870 |
+
| 0.6453 | 22500 | 3.9109 | - | - | - | - | - |
|
871 |
+
| 0.6482 | 22600 | 3.4698 | - | - | - | - | - |
|
872 |
+
| 0.6511 | 22700 | 3.1229 | - | - | - | - | - |
|
873 |
+
| 0.6539 | 22800 | 3.3769 | - | - | - | - | - |
|
874 |
+
| 0.6568 | 22900 | 3.1849 | - | - | - | - | - |
|
875 |
+
| 0.6597 | 23000 | 3.4464 | - | - | - | - | - |
|
876 |
+
| 0.6625 | 23100 | 2.9192 | - | - | - | - | - |
|
877 |
+
| 0.6654 | 23200 | 3.0796 | - | - | - | - | - |
|
878 |
+
| 0.6683 | 23300 | 3.4603 | - | - | - | - | - |
|
879 |
+
| 0.6711 | 23400 | 3.6775 | - | - | - | - | - |
|
880 |
+
| 0.6740 | 23500 | 3.5132 | - | - | - | - | - |
|
881 |
+
| 0.6769 | 23600 | 3.7764 | - | - | - | - | - |
|
882 |
+
| 0.6797 | 23700 | 3.0643 | - | - | - | - | - |
|
883 |
+
| 0.6826 | 23800 | 3.1545 | - | - | - | - | - |
|
884 |
+
| 0.6855 | 23900 | 2.997 | - | - | - | - | - |
|
885 |
+
| 0.6883 | 24000 | 3.1385 | - | - | - | - | - |
|
886 |
+
| 0.6912 | 24100 | 3.3879 | - | - | - | - | - |
|
887 |
+
| 0.6941 | 24200 | 3.5442 | - | - | - | - | - |
|
888 |
+
| 0.6970 | 24300 | 3.3687 | - | - | - | - | - |
|
889 |
+
| 0.6998 | 24400 | 3.4195 | - | - | - | - | - |
|
890 |
+
| 0.7027 | 24500 | 3.4057 | - | - | - | - | - |
|
891 |
+
| 0.7056 | 24600 | 3.2503 | - | - | - | - | - |
|
892 |
+
| 0.7084 | 24700 | 3.3703 | - | - | - | - | - |
|
893 |
+
| 0.7113 | 24800 | 3.0839 | - | - | - | - | - |
|
894 |
+
| 0.7142 | 24900 | 3.11 | - | - | - | - | - |
|
895 |
+
| 0.7170 | 25000 | 3.1105 | - | - | - | - | - |
|
896 |
+
| 0.7199 | 25100 | 2.8735 | - | - | - | - | - |
|
897 |
+
| 0.7228 | 25200 | 3.0287 | - | - | - | - | - |
|
898 |
+
| 0.7256 | 25300 | 3.2992 | - | - | - | - | - |
|
899 |
+
| 0.7285 | 25400 | 3.2015 | - | - | - | - | - |
|
900 |
+
| 0.7314 | 25500 | 3.3135 | - | - | - | - | - |
|
901 |
+
| 0.7342 | 25600 | 3.1618 | - | - | - | - | - |
|
902 |
+
| 0.7371 | 25700 | 3.5939 | - | - | - | - | - |
|
903 |
+
| 0.7400 | 25800 | 2.9016 | - | - | - | - | - |
|
904 |
+
| 0.7428 | 25900 | 3.2528 | - | - | - | - | - |
|
905 |
+
| 0.7457 | 26000 | 3.5005 | - | - | - | - | - |
|
906 |
+
| 0.7486 | 26100 | 3.2494 | - | - | - | - | - |
|
907 |
+
| 0.7514 | 26200 | 2.618 | - | - | - | - | - |
|
908 |
+
| 0.7543 | 26300 | 4.3413 | - | - | - | - | - |
|
909 |
+
| 0.7572 | 26400 | 4.0215 | - | - | - | - | - |
|
910 |
+
| 0.7601 | 26500 | 3.6406 | - | - | - | - | - |
|
911 |
+
| 0.7629 | 26600 | 3.6815 | - | - | - | - | - |
|
912 |
+
| 0.7658 | 26700 | 3.6911 | - | - | - | - | - |
|
913 |
+
| 0.7687 | 26800 | 3.3901 | - | - | - | - | - |
|
914 |
+
| 0.7715 | 26900 | 3.7262 | - | - | - | - | - |
|
915 |
+
| 0.7744 | 27000 | 3.3099 | - | - | - | - | - |
|
916 |
+
| 0.7773 | 27100 | 3.2131 | - | - | - | - | - |
|
917 |
+
| 0.7801 | 27200 | 3.1818 | - | - | - | - | - |
|
918 |
+
| 0.7830 | 27300 | 3.3306 | - | - | - | - | - |
|
919 |
+
| 0.7859 | 27400 | 3.4347 | - | - | - | - | - |
|
920 |
+
| 0.7887 | 27500 | 3.1169 | - | - | - | - | - |
|
921 |
+
| 0.7916 | 27600 | 3.2788 | - | - | - | - | - |
|
922 |
+
| 0.7945 | 27700 | 3.3876 | - | - | - | - | - |
|
923 |
+
| 0.7973 | 27800 | 3.0329 | - | - | - | - | - |
|
924 |
+
| 0.8002 | 27900 | 2.9935 | - | - | - | - | - |
|
925 |
+
| 0.8031 | 28000 | 3.0313 | - | - | - | - | - |
|
926 |
+
| 0.8059 | 28100 | 3.0293 | - | - | - | - | - |
|
927 |
+
| 0.8088 | 28200 | 3.0225 | - | - | - | - | - |
|
928 |
+
| 0.8117 | 28300 | 2.9378 | - | - | - | - | - |
|
929 |
+
| 0.8145 | 28400 | 2.8588 | - | - | - | - | - |
|
930 |
+
| 0.8174 | 28500 | 3.0936 | - | - | - | - | - |
|
931 |
+
| 0.8203 | 28600 | 2.9192 | - | - | - | - | - |
|
932 |
+
| 0.8232 | 28700 | 3.0259 | - | - | - | - | - |
|
933 |
+
| 0.8260 | 28800 | 2.76 | - | - | - | - | - |
|
934 |
+
| 0.8289 | 28900 | 3.0673 | - | - | - | - | - |
|
935 |
+
| 0.8318 | 29000 | 2.9333 | - | - | - | - | - |
|
936 |
+
| 0.8346 | 29100 | 2.9847 | - | - | - | - | - |
|
937 |
+
| 0.8375 | 29200 | 2.9882 | - | - | - | - | - |
|
938 |
+
| 0.8404 | 29300 | 2.9578 | - | - | - | - | - |
|
939 |
+
| 0.8432 | 29400 | 2.8535 | - | - | - | - | - |
|
940 |
+
| 0.8461 | 29500 | 3.012 | - | - | - | - | - |
|
941 |
+
| 0.8490 | 29600 | 2.6693 | - | - | - | - | - |
|
942 |
+
| 0.8518 | 29700 | 2.9026 | - | - | - | - | - |
|
943 |
+
| 0.8547 | 29800 | 2.7965 | - | - | - | - | - |
|
944 |
+
| 0.8576 | 29900 | 2.8402 | - | - | - | - | - |
|
945 |
+
| 0.8604 | 30000 | 2.6286 | - | - | - | - | - |
|
946 |
+
| 0.8633 | 30100 | 2.6588 | - | - | - | - | - |
|
947 |
+
| 0.8662 | 30200 | 2.6185 | - | - | - | - | - |
|
948 |
+
| 0.8690 | 30300 | 2.785 | - | - | - | - | - |
|
949 |
+
| 0.8719 | 30400 | 2.7637 | - | - | - | - | - |
|
950 |
+
| 0.8748 | 30500 | 2.8271 | - | - | - | - | - |
|
951 |
+
| 0.8776 | 30600 | 2.6788 | - | - | - | - | - |
|
952 |
+
| 0.8805 | 30700 | 2.5934 | - | - | - | - | - |
|
953 |
+
| 0.8834 | 30800 | 2.7782 | - | - | - | - | - |
|
954 |
+
| 0.8863 | 30900 | 2.7925 | - | - | - | - | - |
|
955 |
+
| 0.8891 | 31000 | 2.6091 | - | - | - | - | - |
|
956 |
+
| 0.8920 | 31100 | 2.7123 | - | - | - | - | - |
|
957 |
+
| 0.8949 | 31200 | 2.6067 | - | - | - | - | - |
|
958 |
+
| 0.8977 | 31300 | 2.65 | - | - | - | - | - |
|
959 |
+
| 0.9006 | 31400 | 2.7695 | - | - | - | - | - |
|
960 |
+
| 0.9035 | 31500 | 2.7075 | - | - | - | - | - |
|
961 |
+
| 0.9063 | 31600 | 2.5539 | - | - | - | - | - |
|
962 |
+
| 0.9092 | 31700 | 2.5283 | - | - | - | - | - |
|
963 |
+
| 0.9121 | 31800 | 2.7156 | - | - | - | - | - |
|
964 |
+
| 0.9149 | 31900 | 2.4318 | - | - | - | - | - |
|
965 |
+
| 0.9178 | 32000 | 2.7335 | - | - | - | - | - |
|
966 |
+
| 0.9207 | 32100 | 2.4435 | - | - | - | - | - |
|
967 |
+
| 0.9235 | 32200 | 2.6529 | - | - | - | - | - |
|
968 |
+
| 0.9264 | 32300 | 2.568 | - | - | - | - | - |
|
969 |
+
| 0.9293 | 32400 | 2.5639 | - | - | - | - | - |
|
970 |
+
| 0.9321 | 32500 | 2.6727 | - | - | - | - | - |
|
971 |
+
| 0.9350 | 32600 | 2.5063 | - | - | - | - | - |
|
972 |
+
| 0.9379 | 32700 | 2.5447 | - | - | - | - | - |
|
973 |
+
| 0.9407 | 32800 | 2.5767 | - | - | - | - | - |
|
974 |
+
| 0.9436 | 32900 | 2.5155 | - | - | - | - | - |
|
975 |
+
| 0.9465 | 33000 | 2.4016 | - | - | - | - | - |
|
976 |
+
| 0.9493 | 33100 | 2.7624 | - | - | - | - | - |
|
977 |
+
| 0.9522 | 33200 | 2.5887 | - | - | - | - | - |
|
978 |
+
| 0.9551 | 33300 | 2.5945 | - | - | - | - | - |
|
979 |
+
| 0.9580 | 33400 | 2.4295 | - | - | - | - | - |
|
980 |
+
| 0.9608 | 33500 | 2.6082 | - | - | - | - | - |
|
981 |
+
| 0.9637 | 33600 | 2.5034 | - | - | - | - | - |
|
982 |
+
| 0.9666 | 33700 | 2.5149 | - | - | - | - | - |
|
983 |
+
| 0.9694 | 33800 | 2.5311 | - | - | - | - | - |
|
984 |
+
| 0.9723 | 33900 | 2.6413 | - | - | - | - | - |
|
985 |
+
| 0.9752 | 34000 | 2.6304 | - | - | - | - | - |
|
986 |
+
| 0.9780 | 34100 | 2.5159 | - | - | - | - | - |
|
987 |
+
| 0.9809 | 34200 | 2.701 | - | - | - | - | - |
|
988 |
+
| 0.9838 | 34300 | 2.3928 | - | - | - | - | - |
|
989 |
+
| 0.9866 | 34400 | 2.5428 | - | - | - | - | - |
|
990 |
+
| 0.9895 | 34500 | 2.4652 | - | - | - | - | - |
|
991 |
+
| 0.9924 | 34600 | 2.7281 | - | - | - | - | - |
|
992 |
+
| 0.9952 | 34700 | 2.4693 | - | - | - | - | - |
|
993 |
+
| 0.9981 | 34800 | 2.4129 | - | - | - | - | - |
|
994 |
+
| 1.0 | 34866 | - | 0.6968 | 0.7001 | 0.7036 | 0.6849 | 0.7052 |
|
995 |
+
|
996 |
+
</details>
|
997 |
+
|
998 |
+
### Framework Versions
|
999 |
+
- Python: 3.11.9
|
1000 |
+
- Sentence Transformers: 3.0.1
|
1001 |
+
- Transformers: 4.40.1
|
1002 |
+
- PyTorch: 2.3.0+cu121
|
1003 |
+
- Accelerate: 0.29.3
|
1004 |
+
- Datasets: 2.19.0
|
1005 |
+
- Tokenizers: 0.19.1
|
1006 |
+
|
1007 |
+
## Citation
|
1008 |
+
|
1009 |
+
### BibTeX
|
1010 |
+
|
1011 |
+
#### Sentence Transformers
|
1012 |
+
```bibtex
|
1013 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1014 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1015 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1016 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1017 |
+
month = "11",
|
1018 |
+
year = "2019",
|
1019 |
+
publisher = "Association for Computational Linguistics",
|
1020 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1021 |
+
}
|
1022 |
+
```
|
1023 |
+
|
1024 |
+
#### MatryoshkaLoss
|
1025 |
+
```bibtex
|
1026 |
+
@misc{kusupati2024matryoshka,
|
1027 |
+
title={Matryoshka Representation Learning},
|
1028 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
1029 |
+
year={2024},
|
1030 |
+
eprint={2205.13147},
|
1031 |
+
archivePrefix={arXiv},
|
1032 |
+
primaryClass={cs.LG}
|
1033 |
+
}
|
1034 |
+
```
|
1035 |
+
|
1036 |
+
#### MultipleNegativesRankingLoss
|
1037 |
+
```bibtex
|
1038 |
+
@misc{henderson2017efficient,
|
1039 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1040 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1041 |
+
year={2017},
|
1042 |
+
eprint={1705.00652},
|
1043 |
+
archivePrefix={arXiv},
|
1044 |
+
primaryClass={cs.CL}
|
1045 |
+
}
|
1046 |
+
```
|
1047 |
+
|
1048 |
+
<!--
|
1049 |
+
## Glossary
|
1050 |
+
|
1051 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1052 |
+
-->
|
1053 |
+
|
1054 |
+
<!--
|
1055 |
+
## Model Card Authors
|
1056 |
+
|
1057 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1058 |
+
-->
|
1059 |
+
|
1060 |
+
<!--
|
1061 |
+
## Model Card Contact
|
1062 |
+
|
1063 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1064 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mixedbread-ai/mxbai-embed-large-v1",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.40.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.40.1",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8c9b7acfb554507e99064ffb9812d333b899891cbddf8f6a58e9945823c83c8
|
3 |
+
size 1340612432
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|