File size: 1,531 Bytes
dea46fb
 
c450c68
 
 
 
 
 
0b2fa43
 
 
 
dea46fb
c450c68
 
 
 
330b53d
 
 
 
9fdf052
330b53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fdf052
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: mit
datasets:
- Helsinki-NLP/tatoeba_mt
language:
- ja
- ko
pipeline_tag: translation
tags:
- python
- transformer
- pytorch
---
# Japanese to Korean translator for FFXIV

**FINAL FANTASY is a registered trademark of Square Enix Holdings Co., Ltd.**

This project is detailed on the [Github repo](https://github.com/sappho192/ffxiv-ja-ko-translator).

# Usage

Check the [test_eval.ipynb](https://huggingface.co/sappho192/ffxiv-ja-ko-translator/blob/main/test_eval.ipynb) or below section.

## Inference

```Python
from transformers import(
    EncoderDecoderModel,
    PreTrainedTokenizerFast,
    BertJapaneseTokenizer,
)

import torch

encoder_model_name = "cl-tohoku/bert-base-japanese-v2"
decoder_model_name = "skt/kogpt2-base-v2"

src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)
trg_tokenizer = PreTrainedTokenizerFast.from_pretrained(decoder_model_name)

# You should change following `./best_model` to the path of model **directory**
model = EncoderDecoderModel.from_pretrained("./best_model")

text = "ギルガメッシュ討伐戦"
# text = "ギルガメッシュ討伐戦に行ってきます。一緒に行きましょうか?"

def translate(text_src):
    embeddings = src_tokenizer(text_src, return_attention_mask=False, return_token_type_ids=False, return_tensors='pt')
    embeddings = {k: v for k, v in embeddings.items()}
    output = model.generate(**embeddings)[0, 1:-1]
    text_trg = trg_tokenizer.decode(output.cpu())
    return text_trg

print(translate(text))
```