sanitas commited on
Commit
bfa873c
·
1 Parent(s): d649c1f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9a4d5270ee4327a333c4dd65a0eaf28866487cf0e1862e7c10492a8f271a63d
3
+ size 122848
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e24c3e456c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e24c3e3ec80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691548804497634681,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7cUzv0bFJr+NYww+gAVFPzH6ur/3aAw+76iTvxfKgL7HZww+8dHHPsujyr9XaAw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAISqDPvf3PD+QEmo/JVDJP0Stkj8pVIy/mdmMvWL0ZD8pVIy/i+Jav/VGNb+h39g/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAfuCY/b5KwPuZL1r6Wf5a+DODHv2qSEsAmVju/7cUzv0bFJr+NYww+iQ6CvCcBEb1o+Cg7DzvzPBx1hzx22349otm3u+C9x7xHPQU8PHdKP25o576rcHS/D03/PQSDLD1gr8g8QxZEv4AFRT8x+rq/92gMPmTug7wwNxG95cWqv//R9DzcoIc8dtt+ParZt7vgvce87VIGPNwEHz7bFhy9EVrpvrWxaz97QaO/HPVsP3GSRL/vqJO/F8qAvsdnDD4nZ4O8aRkRvQ6OYTteuPI848mKPNEjfj2Jffq733XRvBqPBzzoyE8/1Hiyvh3fcb8qsS0+DRrKPtba8zyUi0S/8dHHPsujyr9XaAw+p5ODvNccEb1H4x/Acx71PO3Zhzx22349otm3u+C9x7zj8Ac8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.70223886 -0.65144765 0.1370985 ]\n [ 0.7696152 -1.4607602 0.13711916]\n [-1.153593 -0.25154182 0.13711463]\n [ 0.3902736 -1.5831236 0.13711677]]",
34
+ "desired_goal": "[[ 0.2561808 0.73815864 0.91434574]\n [ 1.5727583 1.1459126 -1.0963184 ]\n [-0.06877441 0.894354 -1.0963184 ]\n [-0.8550193 -0.70811397 1.6943246 ]]",
35
+ "observation": "[[ 0.65124696 0.3448672 -0.4185478 -0.29394215 -1.5615249 -2.2901864\n -0.7317833 -0.70223886 -0.65144765 0.1370985 -0.01587607 -0.03540149\n 0.00257828 0.02969125 0.01653533 0.06222101 -0.00561066 -0.02438253\n 0.00813229]\n [ 0.7908819 -0.4519686 -0.9548442 0.1246587 0.04211713 0.02449769\n -0.7659647 0.7696152 -1.4607602 0.13711916 -0.01610488 -0.03545302\n -1.3341643 0.02988529 0.0165562 0.06222101 -0.00561066 -0.02438253\n 0.00819848]\n [ 0.15529197 -0.03810773 -0.45576528 0.92068034 -1.2754358 0.9256151\n -0.7678595 -1.153593 -0.25154182 0.13711463 -0.0160404 -0.03542462\n 0.00344169 0.02962893 0.01694197 0.06204588 -0.00764436 -0.0255689\n 0.00827386]\n [ 0.81165934 -0.3485781 -0.9448107 0.16962114 0.39473 0.02976744\n -0.7677548 0.3902736 -1.5831236 0.13711677 -0.01606162 -0.03542789\n -2.498247 0.02992175 0.01658341 0.06222101 -0.00561066 -0.02438253\n 0.00829718]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAz2gDvtStnb0K16M8nAdHPTcFAr4K16M8myjZPUXu5b0K16M8WDejPa74270K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU0f8PZXcqD1Ghws+s9R4PUKA/j3QTRs+YDOivHrHQb1ecRY+MLMTPZGs8zy2KEw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAz2gDvtStnb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAJwHRz03BQK+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACbKNk9Re7lvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAWDejPa74270K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.1283295 -0.07699171 0.02 ]\n [ 0.04859124 -0.12697302 0.02 ]\n [ 0.10603448 -0.11227087 0.02 ]\n [ 0.0796954 -0.10740791 0.02 ]]",
45
+ "desired_goal": "[[ 0.12318292 0.08245198 0.13625821]\n [ 0.06074972 0.12426807 0.15166402]\n [-0.01979989 -0.04730938 0.14691684]\n [ 0.03605956 0.02974537 0.19937405]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2832950e-01\n -7.6991707e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.8591241e-02\n -1.2697302e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0603448e-01\n -1.1227087e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.9695404e-02\n -1.0740791e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnrRy3LFGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrPuzQeFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrNOv2Xb/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrX4IKMNudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrieHzpX7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnrga5f+judX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrhAOjIq9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrxWvKU3XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnr/K3EyckdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnr+iY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnsAjlxOtXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnsTDYh+vydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnsgnBLwnZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnsf+p4rz5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnsj6/yoXLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cns3PepGWldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntExhc7hfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntDkvK2a2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntEOgYgq3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntQ/0Eov0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cntb7fYSQHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntaOQhfShdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntYm1QZXNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntjtmL9/CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cntuu4G2TgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntsmVJL/TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntqcIZ62OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnt1eHi3ocdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuASZjQRgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnt+Ncv/R3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnt77aRISUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuGzMRpUQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuRQKa5PNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuPKraM72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuNcqFyq/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuYqVyFPBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnujF+uvECdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnug2oWHk+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnueslLOAzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuqYoJAt4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu1bsfJV9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnuza6z3RHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuyUu+RHPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu+5mI0qIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvKGyX2M9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvINhd+ocdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvGAjps42dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvRouXeFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvcjr7fpEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvacVQAMldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvX/20zCUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnviqdYnv2dX2UKGgGR8A6AAAAAAAAaAdLG2gIR0CnvhAb6xgRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvtNzKcNIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvrEsBhhIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvz0oBq9HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvyYDTz/ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnv+rEk0JodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnv8hIOH32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwHjx0+1SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwF/PX05EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwSar3j+8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwQRY7q6fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwZl9jPOZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwX+Wv8qGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwkJ6po9LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwiIKc/dJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwqNpdrwfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnwot52QnydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw05VwPy1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwyyrxRVIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw8EzXSSedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw6pVKf4AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxG5JCjUNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxEwTdtVJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxM3Kji4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxLOy3Td+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXuBDohZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxVnIQvpRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxeZdv864dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnxc/UWl/IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxpKkVN5/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxnNiH6/JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxwhIOH32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxvLYXfqHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx7dugpSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx5efAbhndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyD6CDmKZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyDosZpBYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyQiZfD1odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyPVN5+pgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnyil5OafBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyiT1kDp1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyvfaQFLWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyuVBUrCndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny/ydFvycdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny/Zmh/RWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzMb1ZkkKdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnzNC7TUiIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzLhOgxrSdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15860807db38e338c54858004e2d78c63d9500e06e89045891b7a5f75f631981
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebc5e89e1f29f135f9aa5a03ccdfc295699dbe7eeff8f28e5eef5e8f59d3327f
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e24c3e456c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e24c3e3ec80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691548804497634681, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7cUzv0bFJr+NYww+gAVFPzH6ur/3aAw+76iTvxfKgL7HZww+8dHHPsujyr9XaAw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAISqDPvf3PD+QEmo/JVDJP0Stkj8pVIy/mdmMvWL0ZD8pVIy/i+Jav/VGNb+h39g/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAfuCY/b5KwPuZL1r6Wf5a+DODHv2qSEsAmVju/7cUzv0bFJr+NYww+iQ6CvCcBEb1o+Cg7DzvzPBx1hzx22349otm3u+C9x7xHPQU8PHdKP25o576rcHS/D03/PQSDLD1gr8g8QxZEv4AFRT8x+rq/92gMPmTug7wwNxG95cWqv//R9DzcoIc8dtt+ParZt7vgvce87VIGPNwEHz7bFhy9EVrpvrWxaz97QaO/HPVsP3GSRL/vqJO/F8qAvsdnDD4nZ4O8aRkRvQ6OYTteuPI848mKPNEjfj2Jffq733XRvBqPBzzoyE8/1Hiyvh3fcb8qsS0+DRrKPtba8zyUi0S/8dHHPsujyr9XaAw+p5ODvNccEb1H4x/Acx71PO3Zhzx22349otm3u+C9x7zj8Ac8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.70223886 -0.65144765 0.1370985 ]\n [ 0.7696152 -1.4607602 0.13711916]\n [-1.153593 -0.25154182 0.13711463]\n [ 0.3902736 -1.5831236 0.13711677]]", "desired_goal": "[[ 0.2561808 0.73815864 0.91434574]\n [ 1.5727583 1.1459126 -1.0963184 ]\n [-0.06877441 0.894354 -1.0963184 ]\n [-0.8550193 -0.70811397 1.6943246 ]]", "observation": "[[ 0.65124696 0.3448672 -0.4185478 -0.29394215 -1.5615249 -2.2901864\n -0.7317833 -0.70223886 -0.65144765 0.1370985 -0.01587607 -0.03540149\n 0.00257828 0.02969125 0.01653533 0.06222101 -0.00561066 -0.02438253\n 0.00813229]\n [ 0.7908819 -0.4519686 -0.9548442 0.1246587 0.04211713 0.02449769\n -0.7659647 0.7696152 -1.4607602 0.13711916 -0.01610488 -0.03545302\n -1.3341643 0.02988529 0.0165562 0.06222101 -0.00561066 -0.02438253\n 0.00819848]\n [ 0.15529197 -0.03810773 -0.45576528 0.92068034 -1.2754358 0.9256151\n -0.7678595 -1.153593 -0.25154182 0.13711463 -0.0160404 -0.03542462\n 0.00344169 0.02962893 0.01694197 0.06204588 -0.00764436 -0.0255689\n 0.00827386]\n [ 0.81165934 -0.3485781 -0.9448107 0.16962114 0.39473 0.02976744\n -0.7677548 0.3902736 -1.5831236 0.13711677 -0.01606162 -0.03542789\n -2.498247 0.02992175 0.01658341 0.06222101 -0.00561066 -0.02438253\n 0.00829718]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAz2gDvtStnb0K16M8nAdHPTcFAr4K16M8myjZPUXu5b0K16M8WDejPa74270K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU0f8PZXcqD1Ghws+s9R4PUKA/j3QTRs+YDOivHrHQb1ecRY+MLMTPZGs8zy2KEw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAz2gDvtStnb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAJwHRz03BQK+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACbKNk9Re7lvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAWDejPa74270K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.1283295 -0.07699171 0.02 ]\n [ 0.04859124 -0.12697302 0.02 ]\n [ 0.10603448 -0.11227087 0.02 ]\n [ 0.0796954 -0.10740791 0.02 ]]", "desired_goal": "[[ 0.12318292 0.08245198 0.13625821]\n [ 0.06074972 0.12426807 0.15166402]\n [-0.01979989 -0.04730938 0.14691684]\n [ 0.03605956 0.02974537 0.19937405]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2832950e-01\n -7.6991707e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.8591241e-02\n -1.2697302e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0603448e-01\n -1.1227087e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.9695404e-02\n -1.0740791e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnrRy3LFGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrPuzQeFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrNOv2Xb/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrX4IKMNudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrieHzpX7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnrga5f+judX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrhAOjIq9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrxWvKU3XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnr/K3EyckdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnr+iY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnsAjlxOtXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnsTDYh+vydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnsgnBLwnZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnsf+p4rz5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnsj6/yoXLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cns3PepGWldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntExhc7hfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntDkvK2a2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntEOgYgq3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntQ/0Eov0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cntb7fYSQHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntaOQhfShdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntYm1QZXNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntjtmL9/CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cntuu4G2TgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntsmVJL/TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntqcIZ62OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnt1eHi3ocdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuASZjQRgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnt+Ncv/R3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnt77aRISUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuGzMRpUQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuRQKa5PNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuPKraM72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuNcqFyq/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuYqVyFPBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnujF+uvECdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnug2oWHk+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnueslLOAzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuqYoJAt4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu1bsfJV9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnuza6z3RHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuyUu+RHPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu+5mI0qIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvKGyX2M9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvINhd+ocdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvGAjps42dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvRouXeFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvcjr7fpEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvacVQAMldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvX/20zCUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnviqdYnv2dX2UKGgGR8A6AAAAAAAAaAdLG2gIR0CnvhAb6xgRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvtNzKcNIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvrEsBhhIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvz0oBq9HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvyYDTz/ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnv+rEk0JodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnv8hIOH32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwHjx0+1SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwF/PX05EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwSar3j+8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwQRY7q6fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwZl9jPOZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwX+Wv8qGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwkJ6po9LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwiIKc/dJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwqNpdrwfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnwot52QnydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw05VwPy1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwyyrxRVIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw8EzXSSedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw6pVKf4AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxG5JCjUNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxEwTdtVJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxM3Kji4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxLOy3Td+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXuBDohZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxVnIQvpRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxeZdv864dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnxc/UWl/IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxpKkVN5/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxnNiH6/JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxwhIOH32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxvLYXfqHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx7dugpSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx5efAbhndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyD6CDmKZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyDosZpBYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyQiZfD1odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyPVN5+pgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnyil5OafBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyiT1kDp1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyvfaQFLWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyuVBUrCndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny/ydFvycdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny/Zmh/RWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzMb1ZkkKdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnzNC7TUiIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzLhOgxrSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (866 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-09T03:31:05.227507"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9ea43a8fec2e59d3f5097721dfafdf43c33ec38045f9ef01bea84710f202d5e
3
+ size 3013