Handy Utility For Later
Browse files- loraize.py +53 -0
loraize.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# you have got to be shitting me
|
2 |
+
import huggingface_hub
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel
|
5 |
+
import torch
|
6 |
+
|
7 |
+
import os
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
parser = argparse.ArgumentParser(
|
11 |
+
prog='loraize',
|
12 |
+
description='Apply one or more loras to a model, and then save it',
|
13 |
+
epilog='BOTTOM TEXT')
|
14 |
+
parser.add_argument(
|
15 |
+
'model',
|
16 |
+
type=str,
|
17 |
+
help='path or HF name of a base model',
|
18 |
+
)
|
19 |
+
parser.add_argument(
|
20 |
+
'lora',
|
21 |
+
type=str,
|
22 |
+
help='one or more LORAs to apply',
|
23 |
+
nargs='+')
|
24 |
+
parser.add_argument(
|
25 |
+
'output_dir',
|
26 |
+
type=str,
|
27 |
+
help='output directory',
|
28 |
+
)
|
29 |
+
args = parser.parse_args()
|
30 |
+
|
31 |
+
print(f"Loading bassoon model:", args.model)
|
32 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
args.model,
|
34 |
+
return_dict=True,
|
35 |
+
torch_dtype=torch.bfloat16,
|
36 |
+
device_map="cpu",
|
37 |
+
)
|
38 |
+
|
39 |
+
for lora in args.lora:
|
40 |
+
print(f"Loading LORA: ",lora)
|
41 |
+
model = PeftModel.from_pretrained(
|
42 |
+
base_model,
|
43 |
+
lora,
|
44 |
+
device_map="cpu"
|
45 |
+
)
|
46 |
+
print(f"Good luck, bitches. Unloading.")
|
47 |
+
print("This gon' take a sec.")
|
48 |
+
model = model.merge_and_unload()
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
50 |
+
|
51 |
+
model.save_pretrained(args.output_dir, safe_serialization=True, max_shard_size='10GB')
|
52 |
+
tokenizer.save_pretrained(args.output_dir)
|
53 |
+
|