Feature Extraction
music
File size: 10,751 Bytes
50feb15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f94d6d5
30e094c
7ae264c
7566c28
bf2749e
7ae264c
eb3ffc5
 
50feb15
 
 
 
 
f94d6d5
7ae264c
50feb15
f94d6d5
 
 
 
 
50feb15
f94d6d5
 
50feb15
f94d6d5
eb3ffc5
f94d6d5
50feb15
f94d6d5
 
 
 
 
 
 
50feb15
f94d6d5
1458565
f94d6d5
 
 
 
 
50feb15
7ae264c
 
f94d6d5
 
 
 
 
 
 
50feb15
f94d6d5
 
 
50feb15
f94d6d5
50feb15
f94d6d5
50feb15
f94d6d5
50feb15
f94d6d5
 
 
 
 
 
 
50feb15
 
f94d6d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a10df5a
f94d6d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9ca50e
 
 
 
f94d6d5
 
 
f9ca50e
f94d6d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50feb15
 
f94d6d5
eb3ffc5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
license: mit
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh  
- yue  
base_model:
- FacebookAI/xlm-roberta-base
pipeline_tag: feature-extraction
tags:
- music
---
# **CLaMP 3: Universal Music Information Retrieval Across Unaligned Modalities and Unseen Languages**
[![Homepage](https://img.shields.io/badge/CLaMP%203%20Homepage-Coming%20Soon-lightgrey?style=for-the-badge&logo=home-assistant)](#)
[![Paper](https://img.shields.io/badge/CLaMP%203%20Paper-Coming%20Soon-lightgrey?style=for-the-badge&logo=arxiv)](#)
[![GitHub](https://img.shields.io/badge/CLaMP%203%20Code-GitHub-181717?style=for-the-badge&logo=github)](https://github.com/sanderwood/clamp3)
[![Demo](https://img.shields.io/badge/CLaMP%203%20Demo-Gradio-green?style=for-the-badge&logo=gradio)](https://huggingface.co/spaces/sander-wood/clamp3)
[![Hugging Face](https://img.shields.io/badge/Model%20Weights-Hugging%20Face-ffcc00?style=for-the-badge&logo=huggingface)](https://huggingface.co/sander-wood/clamp3/tree/main)
[![Dataset](https://img.shields.io/badge/M4--RAG%20Dataset-Hugging%20Face-ffcc00?style=for-the-badge&logo=huggingface)](https://huggingface.co/datasets/sander-wood/m4-rag)
[![Benchmark](https://img.shields.io/badge/WikiMT--X%20Benchmark-Hugging%20Face-ffcc00?style=for-the-badge&logo=huggingface)](https://huggingface.co/datasets/sander-wood/wikimt-x)

<p align="center">
  <img src="overview.png" alt="CLaMP 3 Overview" width="50%">
</p>

## **Overview**
CLaMP 3 is a multimodal and multilingual framework for music information retrieval (MIR) that supports all major music formats—sheet music, audio, and performance signals—along with multilingual text. It is trained on 27 languages and can generalize to support 100 languages. Using contrastive learning, CLaMP 3 aligns these different formats into a shared representation space, making cross-modal retrieval seamless. Experiments show that it significantly outperforms previous strong baselines, setting a new state-of-the-art in multimodal and multilingual MIR.

### **Key Features**  
- **Multimodal Support:**  
   - **Sheet Music:** Uses **Interleaved ABC notation**, with a context size of **512 bars**.  
   - **Performance Signals:** Processes **MIDI Text Format (MTF)** data, with a context size of **512 MIDI messages**.  
   - **Audio Recordings:** Works with features extracted by **[MERT](https://arxiv.org/abs/2306.00107)**, with a context size of **640 seconds of audio**.

- **Multilingual Capabilities:**  
   - Trained on **27 languages** and generalizes to all **100 languages** supported by **[XLM-R](https://arxiv.org/abs/1911.02116)**.  

- **Datasets & Benchmarking:**  
   - **[M4-RAG](https://huggingface.co/datasets/sander-wood/m4-rag):** A **web-scale** dataset of **2.31M high-quality music-text pairs** across 27 languages and 194 countries.  
   - **[WikiMT-X](https://huggingface.co/datasets/sander-wood/wikimt-x):** A MIR benchmark containing **1,000 triplets** of sheet music, audio, and diverse text annotations.  

### **Applications**  
CLaMP 3 supports a **wide range of music research tasks**, including but not limited to:  
- **Semantic Retrieval:** Find music based on **descriptions** or retrieve textual metadata for **audio or symbolic** inputs.  
- **Zero-Shot Classification:** Categorize **music by genre, region, or other attributes** without labeled training data.  
- **Music Quality Assessment:** Compute the **semantic distance** between reference and generated music features, similar to **Fréchet Inception Distance (FID)**.  
- **Cross-Modal Generative Model Evaluation:** Assess **text-to-music generation, music captioning**, and **symbolic-to-audio synthesis** models.  
- **Computational Musicology:** By visualizing the distribution of data within the **shared representation space**, researchers can explore regional music patterns, stylistic similarities, and cross-cultural influences. 

Importantly, these applications are **not restricted to any specific music modality or language**, making CLaMP 3 a powerful tool for **diverse music AI research**.

## **Repository Structure**
- **[code/](https://github.com/sanderwood/clamp3/tree/main/code)** → Training & feature extraction scripts.
- **[classification/](https://github.com/sanderwood/clamp3/tree/main/classification)** → Linear classification training and prediction.  
- **[preprocessing/](https://github.com/sanderwood/clamp3/tree/main/preprocessing)** → Convert data into **Interleaved ABC, MTF, or MERT-extracted features**.  
- **[retrieval/](https://github.com/sanderwood/clamp3/tree/main/retrieval)** → Semantic search, retrieval evaluation, and similarity calculations.  

> **Note:** Ensure the model weights are placed in the `code/` folder, and verify the **configuration hyperparameters** before use.

## **Getting Started**
### **Environment Setup**
To set up the environment for CLaMP 3, run:  
```bash
conda env create -f environment.yml
conda activate clamp3
```

### **Data Preparation**
#### **1. Convert Music Data to Compatible Formats**
Before using CLaMP 3, preprocess **MusicXML files** into **Interleaved ABC**, **MIDI files** into **MTF**, and **audio files** into **MERT-extracted features**.

> **Note:** Each script requires a manual edit of the `input_dir` variable at the top of the file before running, **except for the MERT extraction script (`extract_mert.py`), which takes command-line arguments for input and output paths.**

##### **1.1 Convert MusicXML to Interleaved ABC Notation**

CLaMP 3 requires **Interleaved ABC notation** for sheet music. To achieve this, first, convert **MusicXML** (`.mxl`, `.xml`, `.musicxml`) to **standard ABC** using [`batch_xml2abc.py`](https://github.com/sanderwood/clamp3/blob/main/preprocessing/abc/batch_xml2abc.py):

```bash
python batch_xml2abc.py
```
- **Input:** `.mxl`, `.xml`, `.musicxml`  
- **Output:** `.abc` (Standard ABC)
 
Next, process the standard ABC files into **Interleaved ABC notation** using [`batch_interleaved_abc.py`](https://github.com/sanderwood/clamp3/blob/main/preprocessing/abc/batch_interleaved_abc.py):

```bash
python batch_interleaved_abc.py
```
- **Input:** `.abc` (Standard ABC)  
- **Output:** `.abc` *(Interleaved ABC for CLaMP 3)*  

##### **1.2 Convert MIDI to MTF Format**
CLaMP 3 processes **performance signals** in **MIDI Text Format (MTF)**. Convert **MIDI files** (`.mid`, `.midi`) into **MTF format** using [`batch_midi2mtf.py`](https://github.com/sanderwood/clamp3/blob/main/preprocessing/midi/batch_midi2mtf.py):

```bash
python batch_midi2mtf.py
```
- **Input:** `.mid`, `.midi`  
- **Output:** `.mtf` *(MTF for CLaMP 3)*  

##### **1.3 Extract Audio Features using MERT**
For audio processing, CLaMP 3 uses **MERT-extracted features** instead of raw waveforms. Extract **MERT-based features** from raw audio (`.mp3`, `.wav`) using [`extract_mert.py`](https://github.com/sanderwood/clamp3/blob/main/preprocessing/audio/extract_mert.py):

```bash
python extract_mert.py --input_path <input_path> --output_path <output_path> --model_path m-a-p/MERT-v1-95M --mean_features
```
- **Input:** `.mp3`, `.wav`  
- **Output:** `.npy` *(Processed audio features for CLaMP 3)*  

### **Training and Feature Extraction**
#### **1. Training Models**
Modify **[config.py](https://github.com/sanderwood/clamp3/blob/main/code/config.py)** to adjust **hyperparameters and data paths**.

To train CLaMP 3 on **symbolic music**, use **[train_clamp3_symbolic.py](https://github.com/sanderwood/clamp3/blob/main/code/train_clamp3_symbolic.py)**:

```bash
python -m torch.distributed.launch --nproc_per_node=<GPUs> --use_env train_clamp3_symbolic.py
```

For **audio data**, use **[train_clamp3_audio.py](https://github.com/sanderwood/clamp3/blob/main/code/train_clamp3_audio.py)**:

```bash
python -m torch.distributed.launch --nproc_per_node=<GPUs> --use_env train_clamp3_audio.py
```

Alternatively, you can use **pre-trained weights**:
- **[CLaMP 3 SAAS (Optimal for Audio)](https://huggingface.co/sander-wood/clamp3/blob/main/weights_clamp3_saas.pth)**
- **[CLaMP 3 C2 (Optimal for Symbolic Music)](https://huggingface.co/sander-wood/clamp3/blob/main/weights_clamp3_c2.pth)**  

By default, CLaMP 3 is configured for the **SAAS version**, which provides **optimal performance on audio data**. If working primarily with **symbolic music**, download the **C2 variant** and modify **line 66 in `config.py`** from **saas** to **c2**.

#### **2. Feature Extraction**
After training (or using pre-trained weights), extract features using [`extract_clamp3.py`](https://github.com/sanderwood/clamp3/blob/main/code/extract_clamp3.py):

```bash
accelerate launch extract_clamp3.py --epoch <epoch> <input_dir> <output_dir> [--get_global]
```
- **`--epoch <epoch>`:** (Optional) Specify the checkpoint epoch.  
- **`<input_dir>`:** Directory containing the input files.  
- **`<output_dir>`:** Destination folder for the output `.npy` features.  
- **`--get_global`**: **(Required for retrieval!)** Extracts a **global semantic vector** for each input.  

All extracted features are stored as `.npy` files.

> **Note**: For retrieval, `--get_global` must be used. Without it, CLaMP 3 will not work correctly for retrieval tasks. You only omit `--get_global` if you are performing downstream fine-tuning or need raw feature extraction for custom tasks.

### **Retrieval and Classification**
#### **1. Semantic Search**
Retrieve **similar music features** using **[`semantic_search.py`](https://github.com/sanderwood/clamp3/tree/main/retrieval/semantic_search.py)**:  
```bash
python semantic_search.py <query_file> <reference_folder> [--top_k TOP_K]
```
> **Note:** Zero-shot classification is essentially **semantic search**, where the query feature is compared against class prototypes.  

#### **2. Classification**
Train a linear classifier using **[`train_cls.py`](https://github.com/sanderwood/clamp3/tree/main/classification/train_cls.py)**:  
```bash
python train_cls.py --train_folder <path> --eval_folder <path> [--num_epochs <int>] [--learning_rate <float>] [--balanced_training]
```
Run inference with **[`inference_cls.py`](https://github.com/sanderwood/clamp3/tree/main/classification/inference_cls.py)**:  
```bash
python inference_cls.py <weights_path> <feature_folder> <output_file>
```

## **Citation**
*Coming Soon...*