File size: 2,575 Bytes
95f37b9
 
 
 
 
63c3cd9
 
95f37b9
 
 
ed44084
95f37b9
63c3cd9
 
 
9832afe
 
95f37b9
 
 
 
 
ed44084
95f37b9
dff0904
95f37b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c3cd9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- T2SAM
- abstractive summarization
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-inshorts-news-summary
  results: []
language:
- en
library_name: transformers
datasets:
- sandeep16064/news_summary
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-inshorts-news-summary

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [inshorts-news-summary dataset] (https://huggingface.co/datasets/sandeep16064/news_summary).
It achieves the following results on the evaluation set:
- Loss: 1.5399
- Rouge1: 54.613
- Rouge2: 31.1543
- Rougel: 50.7709
- Rougelsum: 50.7907

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 3.3244        | 1.0   | 5511  | 1.8904          | 51.0778 | 28.3112 | 47.4136 | 47.404    |
| 2.2747        | 2.0   | 11022 | 1.7450          | 51.8372 | 28.9814 | 48.0917 | 48.0965   |
| 2.0745        | 3.0   | 16533 | 1.6567          | 52.518  | 29.7276 | 48.727  | 48.7504   |
| 1.9516        | 4.0   | 22044 | 1.6210          | 54.2404 | 30.8927 | 50.4042 | 50.3996   |
| 1.8714        | 5.0   | 27555 | 1.5971          | 53.8556 | 30.6665 | 50.112  | 50.1177   |
| 1.8112        | 6.0   | 33066 | 1.5649          | 54.179  | 31.0178 | 50.407  | 50.4281   |
| 1.7644        | 7.0   | 38577 | 1.5605          | 54.3104 | 30.7997 | 50.4555 | 50.4861   |
| 1.7265        | 8.0   | 44088 | 1.5447          | 54.5593 | 31.0283 | 50.6343 | 50.6605   |
| 1.7013        | 9.0   | 49599 | 1.5440          | 54.7385 | 31.3073 | 50.9111 | 50.9334   |
| 1.6864        | 10.0  | 55110 | 1.5399          | 54.613  | 31.1543 | 50.7709 | 50.7907   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.13.3