sanchit-gandhi
commited on
Commit
·
401e1f5
1
Parent(s):
f248ee9
up
Browse files- run.sh +29 -0
- run_audio_classification.py +418 -0
run.sh
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_audio_classification.py \
|
2 |
+
--model_name_or_path openai/whisper-small \
|
3 |
+
--dataset_name common_language \
|
4 |
+
--output_dir ./ \
|
5 |
+
--overwrite_output_dir \
|
6 |
+
--remove_unused_columns False \
|
7 |
+
--do_train \
|
8 |
+
--do_eval \
|
9 |
+
--fp16 \
|
10 |
+
--learning_rate 1e-5 \
|
11 |
+
--max_length_seconds 30 \
|
12 |
+
--attention_mask False \
|
13 |
+
--warmup_ratio 0.1 \
|
14 |
+
--num_train_epochs 10 \
|
15 |
+
--per_device_train_batch_size 16 \
|
16 |
+
--gradient_accumulation_steps 2 \
|
17 |
+
--per_device_eval_batch_size 16 \
|
18 |
+
--gradient_checkpointing \
|
19 |
+
--dataloader_num_workers 4 \
|
20 |
+
--logging_strategy steps \
|
21 |
+
--logging_steps 25 \
|
22 |
+
--evaluation_strategy epoch \
|
23 |
+
--save_strategy epoch \
|
24 |
+
--load_best_model_at_end True \
|
25 |
+
--metric_for_best_model accuracy \
|
26 |
+
--seed 0 \
|
27 |
+
--freeze_feature_encoder False \
|
28 |
+
--label_column_name language \
|
29 |
+
--push_to_hub
|
run_audio_classification.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import logging
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass, field
|
22 |
+
from random import randint
|
23 |
+
from typing import Optional
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
import evaluate
|
27 |
+
import numpy as np
|
28 |
+
from datasets import DatasetDict, load_dataset
|
29 |
+
|
30 |
+
import transformers
|
31 |
+
from transformers import (
|
32 |
+
AutoConfig,
|
33 |
+
AutoFeatureExtractor,
|
34 |
+
AutoModelForAudioClassification,
|
35 |
+
HfArgumentParser,
|
36 |
+
Trainer,
|
37 |
+
TrainingArguments,
|
38 |
+
set_seed,
|
39 |
+
)
|
40 |
+
from transformers.trainer_utils import get_last_checkpoint
|
41 |
+
from transformers.utils import check_min_version, send_example_telemetry
|
42 |
+
from transformers.utils.versions import require_version
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.getLogger(__name__)
|
46 |
+
|
47 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
48 |
+
check_min_version("4.27.0.dev0")
|
49 |
+
|
50 |
+
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
|
51 |
+
|
52 |
+
|
53 |
+
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000):
|
54 |
+
"""Randomly sample chunks of `max_length` seconds from the input audio"""
|
55 |
+
sample_length = int(round(sample_rate * max_length))
|
56 |
+
if len(wav) <= sample_length:
|
57 |
+
return wav
|
58 |
+
random_offset = randint(0, len(wav) - sample_length - 1)
|
59 |
+
return wav[random_offset : random_offset + sample_length]
|
60 |
+
|
61 |
+
|
62 |
+
@dataclass
|
63 |
+
class DataTrainingArguments:
|
64 |
+
"""
|
65 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
66 |
+
Using `HfArgumentParser` we can turn this class
|
67 |
+
into argparse arguments to be able to specify them on
|
68 |
+
the command line.
|
69 |
+
"""
|
70 |
+
|
71 |
+
dataset_name: Optional[str] = field(default=None, metadata={"help": "Name of a dataset from the datasets package"})
|
72 |
+
dataset_config_name: Optional[str] = field(
|
73 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
74 |
+
)
|
75 |
+
train_file: Optional[str] = field(
|
76 |
+
default=None, metadata={"help": "A file containing the training audio paths and labels."}
|
77 |
+
)
|
78 |
+
eval_file: Optional[str] = field(
|
79 |
+
default=None, metadata={"help": "A file containing the validation audio paths and labels."}
|
80 |
+
)
|
81 |
+
train_split_name: str = field(
|
82 |
+
default="train",
|
83 |
+
metadata={
|
84 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
85 |
+
},
|
86 |
+
)
|
87 |
+
eval_split_name: str = field(
|
88 |
+
default="validation",
|
89 |
+
metadata={
|
90 |
+
"help": (
|
91 |
+
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
|
92 |
+
)
|
93 |
+
},
|
94 |
+
)
|
95 |
+
audio_column_name: str = field(
|
96 |
+
default="audio",
|
97 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
98 |
+
)
|
99 |
+
label_column_name: str = field(
|
100 |
+
default="label", metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"}
|
101 |
+
)
|
102 |
+
max_train_samples: Optional[int] = field(
|
103 |
+
default=None,
|
104 |
+
metadata={
|
105 |
+
"help": (
|
106 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
107 |
+
"value if set."
|
108 |
+
)
|
109 |
+
},
|
110 |
+
)
|
111 |
+
max_eval_samples: Optional[int] = field(
|
112 |
+
default=None,
|
113 |
+
metadata={
|
114 |
+
"help": (
|
115 |
+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
116 |
+
"value if set."
|
117 |
+
)
|
118 |
+
},
|
119 |
+
)
|
120 |
+
max_length_seconds: float = field(
|
121 |
+
default=20,
|
122 |
+
metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."},
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
@dataclass
|
127 |
+
class ModelArguments:
|
128 |
+
"""
|
129 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
130 |
+
"""
|
131 |
+
|
132 |
+
model_name_or_path: str = field(
|
133 |
+
default="facebook/wav2vec2-base",
|
134 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
|
135 |
+
)
|
136 |
+
config_name: Optional[str] = field(
|
137 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
138 |
+
)
|
139 |
+
cache_dir: Optional[str] = field(
|
140 |
+
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
|
141 |
+
)
|
142 |
+
model_revision: str = field(
|
143 |
+
default="main",
|
144 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
145 |
+
)
|
146 |
+
feature_extractor_name: Optional[str] = field(
|
147 |
+
default=None, metadata={"help": "Name or path of preprocessor config."}
|
148 |
+
)
|
149 |
+
freeze_feature_encoder: bool = field(
|
150 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
151 |
+
)
|
152 |
+
attention_mask: bool = field(
|
153 |
+
default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
|
154 |
+
)
|
155 |
+
use_auth_token: bool = field(
|
156 |
+
default=False,
|
157 |
+
metadata={
|
158 |
+
"help": (
|
159 |
+
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
160 |
+
"with private models)."
|
161 |
+
)
|
162 |
+
},
|
163 |
+
)
|
164 |
+
freeze_feature_extractor: Optional[bool] = field(
|
165 |
+
default=None, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
|
166 |
+
)
|
167 |
+
ignore_mismatched_sizes: bool = field(
|
168 |
+
default=False,
|
169 |
+
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
170 |
+
)
|
171 |
+
|
172 |
+
def __post_init__(self):
|
173 |
+
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
|
174 |
+
warnings.warn(
|
175 |
+
"The argument `--freeze_feature_extractor` is deprecated and "
|
176 |
+
"will be removed in a future version. Use `--freeze_feature_encoder`"
|
177 |
+
"instead. Setting `freeze_feature_encoder==True`.",
|
178 |
+
FutureWarning,
|
179 |
+
)
|
180 |
+
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
|
181 |
+
raise ValueError(
|
182 |
+
"The argument `--freeze_feature_extractor` is deprecated and "
|
183 |
+
"should not be used in combination with `--freeze_feature_encoder`."
|
184 |
+
"Only make use of `--freeze_feature_encoder`."
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
def main():
|
189 |
+
# See all possible arguments in src/transformers/training_args.py
|
190 |
+
# or by passing the --help flag to this script.
|
191 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
192 |
+
|
193 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
194 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
195 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
196 |
+
# let's parse it to get our arguments.
|
197 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
198 |
+
else:
|
199 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
200 |
+
|
201 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
202 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
203 |
+
send_example_telemetry("run_audio_classification", model_args, data_args)
|
204 |
+
|
205 |
+
# Setup logging
|
206 |
+
logging.basicConfig(
|
207 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
208 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
209 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
210 |
+
)
|
211 |
+
|
212 |
+
if training_args.should_log:
|
213 |
+
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
214 |
+
transformers.utils.logging.set_verbosity_info()
|
215 |
+
|
216 |
+
log_level = training_args.get_process_log_level()
|
217 |
+
logger.setLevel(log_level)
|
218 |
+
transformers.utils.logging.set_verbosity(log_level)
|
219 |
+
transformers.utils.logging.enable_default_handler()
|
220 |
+
transformers.utils.logging.enable_explicit_format()
|
221 |
+
|
222 |
+
# Log on each process the small summary:
|
223 |
+
logger.warning(
|
224 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
|
225 |
+
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
226 |
+
)
|
227 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
228 |
+
|
229 |
+
# Set seed before initializing model.
|
230 |
+
set_seed(training_args.seed)
|
231 |
+
|
232 |
+
# Detecting last checkpoint.
|
233 |
+
last_checkpoint = None
|
234 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
235 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
236 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
237 |
+
raise ValueError(
|
238 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
239 |
+
"Use --overwrite_output_dir to train from scratch."
|
240 |
+
)
|
241 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
242 |
+
logger.info(
|
243 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
244 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
245 |
+
)
|
246 |
+
|
247 |
+
# Initialize our dataset and prepare it for the audio classification task.
|
248 |
+
raw_datasets = DatasetDict()
|
249 |
+
raw_datasets["train"] = load_dataset(
|
250 |
+
data_args.dataset_name,
|
251 |
+
data_args.dataset_config_name,
|
252 |
+
split=data_args.train_split_name,
|
253 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
254 |
+
)
|
255 |
+
raw_datasets["eval"] = load_dataset(
|
256 |
+
data_args.dataset_name,
|
257 |
+
data_args.dataset_config_name,
|
258 |
+
split=data_args.eval_split_name,
|
259 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
260 |
+
)
|
261 |
+
|
262 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
263 |
+
raise ValueError(
|
264 |
+
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
|
265 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
266 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
267 |
+
)
|
268 |
+
|
269 |
+
if data_args.label_column_name not in raw_datasets["train"].column_names:
|
270 |
+
raise ValueError(
|
271 |
+
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
|
272 |
+
"Make sure to set `--label_column_name` to the correct text column - one of "
|
273 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
274 |
+
)
|
275 |
+
|
276 |
+
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
|
277 |
+
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
|
278 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
279 |
+
model_args.feature_extractor_name or model_args.model_name_or_path,
|
280 |
+
return_attention_mask=model_args.attention_mask,
|
281 |
+
cache_dir=model_args.cache_dir,
|
282 |
+
revision=model_args.model_revision,
|
283 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
284 |
+
)
|
285 |
+
|
286 |
+
# `datasets` takes care of automatically loading and resampling the audio,
|
287 |
+
# so we just need to set the correct target sampling rate.
|
288 |
+
raw_datasets = raw_datasets.cast_column(
|
289 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
290 |
+
)
|
291 |
+
|
292 |
+
model_input_name = feature_extractor.model_input_names[0]
|
293 |
+
|
294 |
+
def train_transforms(batch):
|
295 |
+
"""Apply train_transforms across a batch."""
|
296 |
+
subsampled_wavs = []
|
297 |
+
for audio in batch[data_args.audio_column_name]:
|
298 |
+
wav = random_subsample(
|
299 |
+
audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate
|
300 |
+
)
|
301 |
+
subsampled_wavs.append(wav)
|
302 |
+
inputs = feature_extractor(subsampled_wavs, sampling_rate=feature_extractor.sampling_rate)
|
303 |
+
output_batch = {model_input_name: inputs.get(model_input_name)}
|
304 |
+
output_batch["labels"] = list(batch[data_args.label_column_name])
|
305 |
+
|
306 |
+
return output_batch
|
307 |
+
|
308 |
+
def val_transforms(batch):
|
309 |
+
"""Apply val_transforms across a batch."""
|
310 |
+
wavs = [audio["array"] for audio in batch[data_args.audio_column_name]]
|
311 |
+
inputs = feature_extractor(wavs, sampling_rate=feature_extractor.sampling_rate)
|
312 |
+
output_batch = {model_input_name: inputs.get(model_input_name)}
|
313 |
+
output_batch["labels"] = list(batch[data_args.label_column_name])
|
314 |
+
|
315 |
+
return output_batch
|
316 |
+
|
317 |
+
# Prepare label mappings.
|
318 |
+
# We'll include these in the model's config to get human readable labels in the Inference API.
|
319 |
+
labels = raw_datasets["train"].features[data_args.label_column_name].names
|
320 |
+
label2id, id2label = {}, {}
|
321 |
+
for i, label in enumerate(labels):
|
322 |
+
label2id[label] = str(i)
|
323 |
+
id2label[str(i)] = label
|
324 |
+
|
325 |
+
# Load the accuracy metric from the datasets package
|
326 |
+
metric = evaluate.load("accuracy")
|
327 |
+
|
328 |
+
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
|
329 |
+
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
|
330 |
+
def compute_metrics(eval_pred):
|
331 |
+
"""Computes accuracy on a batch of predictions"""
|
332 |
+
predictions = np.argmax(eval_pred.predictions, axis=1)
|
333 |
+
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
|
334 |
+
|
335 |
+
config = AutoConfig.from_pretrained(
|
336 |
+
model_args.config_name or model_args.model_name_or_path,
|
337 |
+
num_labels=len(labels),
|
338 |
+
label2id=label2id,
|
339 |
+
id2label=id2label,
|
340 |
+
finetuning_task="audio-classification",
|
341 |
+
cache_dir=model_args.cache_dir,
|
342 |
+
revision=model_args.model_revision,
|
343 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
344 |
+
)
|
345 |
+
model = AutoModelForAudioClassification.from_pretrained(
|
346 |
+
model_args.model_name_or_path,
|
347 |
+
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
348 |
+
config=config,
|
349 |
+
cache_dir=model_args.cache_dir,
|
350 |
+
revision=model_args.model_revision,
|
351 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
352 |
+
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
353 |
+
)
|
354 |
+
|
355 |
+
# freeze the convolutional waveform encoder
|
356 |
+
if model_args.freeze_feature_encoder:
|
357 |
+
model.freeze_feature_encoder()
|
358 |
+
|
359 |
+
if training_args.do_train:
|
360 |
+
if data_args.max_train_samples is not None:
|
361 |
+
raw_datasets["train"] = (
|
362 |
+
raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
|
363 |
+
)
|
364 |
+
# Set the training transforms
|
365 |
+
raw_datasets["train"].set_transform(train_transforms, output_all_columns=False)
|
366 |
+
|
367 |
+
if training_args.do_eval:
|
368 |
+
if data_args.max_eval_samples is not None:
|
369 |
+
raw_datasets["eval"] = (
|
370 |
+
raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
|
371 |
+
)
|
372 |
+
# Set the validation transforms
|
373 |
+
raw_datasets["eval"].set_transform(val_transforms, output_all_columns=False)
|
374 |
+
|
375 |
+
# Initialize our trainer
|
376 |
+
trainer = Trainer(
|
377 |
+
model=model,
|
378 |
+
args=training_args,
|
379 |
+
train_dataset=raw_datasets["train"] if training_args.do_train else None,
|
380 |
+
eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
|
381 |
+
compute_metrics=compute_metrics,
|
382 |
+
tokenizer=feature_extractor,
|
383 |
+
)
|
384 |
+
|
385 |
+
# Training
|
386 |
+
if training_args.do_train:
|
387 |
+
checkpoint = None
|
388 |
+
if training_args.resume_from_checkpoint is not None:
|
389 |
+
checkpoint = training_args.resume_from_checkpoint
|
390 |
+
elif last_checkpoint is not None:
|
391 |
+
checkpoint = last_checkpoint
|
392 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
393 |
+
trainer.save_model()
|
394 |
+
trainer.log_metrics("train", train_result.metrics)
|
395 |
+
trainer.save_metrics("train", train_result.metrics)
|
396 |
+
trainer.save_state()
|
397 |
+
|
398 |
+
# Evaluation
|
399 |
+
if training_args.do_eval:
|
400 |
+
metrics = trainer.evaluate()
|
401 |
+
trainer.log_metrics("eval", metrics)
|
402 |
+
trainer.save_metrics("eval", metrics)
|
403 |
+
|
404 |
+
# Write model card and (optionally) push to hub
|
405 |
+
kwargs = {
|
406 |
+
"finetuned_from": model_args.model_name_or_path,
|
407 |
+
"tasks": "audio-classification",
|
408 |
+
"dataset": data_args.dataset_name,
|
409 |
+
"tags": ["audio-classification"],
|
410 |
+
}
|
411 |
+
if training_args.push_to_hub:
|
412 |
+
trainer.push_to_hub(**kwargs)
|
413 |
+
else:
|
414 |
+
trainer.create_model_card(**kwargs)
|
415 |
+
|
416 |
+
|
417 |
+
if __name__ == "__main__":
|
418 |
+
main()
|