sanchit-gandhi's picture
Training in progress, step 100
409a825 verified
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
import sys
import torch
import transformers
from transformers import AutoModelForCausalLM, set_seed
from alignment import (
DataArguments,
DPOConfig,
H4ArgumentParser,
ModelArguments,
apply_chat_template,
get_checkpoint,
get_datasets,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
get_tokenizer,
is_adapter_model,
)
from peft import PeftConfig, PeftModel
from trl import DPOTrainer
logger = logging.getLogger(__name__)
def main():
parser = H4ArgumentParser((ModelArguments, DataArguments, DPOConfig))
model_args, data_args, training_args = parser.parse()
#######
# Setup
#######
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.info(f"Model parameters {model_args}")
logger.info(f"Data parameters {data_args}")
logger.info(f"Training/evaluation parameters {training_args}")
# Check for last checkpoint
last_checkpoint = get_checkpoint(training_args)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.")
# Set seed for reproducibility
set_seed(training_args.seed)
###############
# Load datasets
###############
raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits)
logger.info(
f"Training on the following splits: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}"
)
column_names = list(raw_datasets["train"].features)
#####################################
# Load tokenizer and process datasets
#####################################
data_args.truncation_side = "left" # Truncate from left to ensure we don't lose labels in final turn
tokenizer = get_tokenizer(model_args, data_args)
#####################
# Apply chat template
#####################
raw_datasets = raw_datasets.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer, "task": "dpo"},
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
desc="Formatting comparisons with prompt template",
)
# Replace column names with what TRL needs, text_chosen -> chosen and text_rejected -> rejected
for split in ["train", "test"]:
raw_datasets[split] = raw_datasets[split].rename_columns(
{"text_prompt": "prompt", "text_chosen": "chosen", "text_rejected": "rejected"}
)
# Log a few random samples from the training set:
for index in random.sample(range(len(raw_datasets["train"])), 3):
logger.info(f"Prompt sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['prompt']}")
logger.info(f"Chosen sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['chosen']}")
logger.info(f"Rejected sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['rejected']}")
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
use_flash_attention_2=model_args.use_flash_attention_2,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = model_args.model_name_or_path
if is_adapter_model(model, model_args.model_revision) is True:
# Load the base model, merge the adapter weights and unload the adapter
# Note: to run QLoRA, you will need to merge the base model separately as the merged model in 16bit
logger.info(f"Merging PEFT adapters for {model_args.model_name_or_path=}")
peft_config = PeftConfig.from_pretrained(model_args.model_name_or_path, revision=model_args.model_revision)
model_kwargs = dict(
revision=model_args.base_model_revision,
trust_remote_code=model_args.trust_remote_code,
use_flash_attention_2=model_args.use_flash_attention_2,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
)
base_model = AutoModelForCausalLM.from_pretrained(
peft_config.base_model_name_or_path,
**model_kwargs,
)
model = PeftModel.from_pretrained(
base_model, model_args.model_name_or_path, revision=model_args.model_revision
)
model.eval()
model = model.merge_and_unload()
model_kwargs = None
ref_model = model
ref_model_kwargs = model_kwargs
if model_args.use_peft is True:
ref_model = None
ref_model_kwargs = None
#########################
# Instantiate DPO trainer
#########################
trainer = DPOTrainer(
model,
ref_model,
model_init_kwargs=model_kwargs,
ref_model_init_kwargs=ref_model_kwargs,
args=training_args,
beta=training_args.beta,
train_dataset=raw_datasets["train"],
eval_dataset=raw_datasets["test"],
tokenizer=tokenizer,
max_length=training_args.max_length,
max_prompt_length=training_args.max_prompt_length,
peft_config=get_peft_config(model_args),
loss_type=training_args.loss_type,
)
###############
# Training loop
###############
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = len(raw_datasets["train"])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
logger.info("*** Training complete ***")
##########
# Evaluate
##########
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
metrics["eval_samples"] = len(raw_datasets["test"])
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
##################################
# Save model and create model card
##################################
logger.info("*** Save model ***")
trainer.save_model(training_args.output_dir)
logger.info(f"Model saved to {training_args.output_dir}")
# Save everything else on main process
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"dataset": list(data_args.dataset_mixer.keys()),
"dataset_tags": list(data_args.dataset_mixer.keys()),
"tags": ["alignment-handbook"],
}
if trainer.accelerator.is_main_process:
trainer.create_model_card(**kwargs)
# Restore k,v cache for fast inference
trainer.model.config.use_cache = True
trainer.model.config.save_pretrained(training_args.output_dir)
if training_args.push_to_hub is True:
logger.info("Pushing to hub...")
trainer.push_to_hub(**kwargs)
logger.info("*** Training complete! ***")
if __name__ == "__main__":
main()