File size: 14,888 Bytes
409a825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6660cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315a9a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b703d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0354e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f48aac
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

  0%|          | 0/478 [00:00<?, ?it/s][WARNING|modeling_utils.py:1188] 2024-04-26 15:57:21,671 >> Could not estimate the number of tokens of the input, floating-point operations will not be computed
  0%|          | 2/478 [00:03<12:43,  1.60s/it]















  5%|β–Œ         | 25/478 [00:32<09:39,  1.28s/it]
















 10%|β–ˆ         | 50/478 [01:05<09:13,  1.29s/it]
















 16%|β–ˆβ–Œ        | 75/478 [01:37<08:37,  1.28s/it]















 21%|β–ˆβ–ˆ        | 100/478 [02:09<08:04,  1.28s/it][INFO|trainer.py:3614] 2024-04-26 15:59:29,412 >> ***** Running Evaluation *****
[INFO|trainer.py:3616] 2024-04-26 15:59:29,412 >>   Num examples = 2000
[INFO|trainer.py:3619] 2024-04-26 15:59:29,412 >>   Batch size = 8
  6%|β–‹         | 2/32 [00:00<00:03,  8.89it/s]



[INFO|configuration_utils.py:471] 2024-04-26 15:59:37,711 >> Configuration saved in ./checkpoint-100/config.json
[INFO|configuration_utils.py:697] 2024-04-26 15:59:37,713 >> Configuration saved in ./checkpoint-100/generation_config.json
{'eval_loss': 0.6759119629859924, 'eval_runtime': 8.2733, 'eval_samples_per_second': 241.742, 'eval_steps_per_second': 3.868, 'eval_rewards/chosen': 0.0017230990342795849, 'eval_rewards/rejected': -0.03281649947166443, 'eval_rewards/accuracies': 0.62890625, 'eval_rewards/margins': 0.0345395989716053, 'eval_logps/rejected': -407.8036804199219, 'eval_logps/chosen': -423.0196533203125, 'eval_logits/rejected': -3.2565112113952637, 'eval_logits/chosen': -3.313567638397217, 'epoch': 0.21}
[INFO|modeling_utils.py:2598] 2024-04-26 15:59:47,330 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at ./checkpoint-100/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2488] 2024-04-26 15:59:47,344 >> tokenizer config file saved in ./checkpoint-100/tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 15:59:47,384 >> Special tokens file saved in ./checkpoint-100/special_tokens_map.json
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:00:07,103 >> tokenizer config file saved in ./tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:00:07,105 >> Special tokens file saved in ./special_tokens_map.json















 26%|β–ˆβ–ˆβ–‹       | 126/478 [03:19<07:28,  1.27s/it]
















 32%|β–ˆβ–ˆβ–ˆβ–      | 151/478 [03:51<06:56,  1.28s/it]
















 37%|β–ˆβ–ˆβ–ˆβ–‹      | 176/478 [04:23<06:28,  1.29s/it]















 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 200/478 [04:54<05:52,  1.27s/it][INFO|trainer.py:3614] 2024-04-26 16:02:14,470 >> ***** Running Evaluation *****
[INFO|trainer.py:3616] 2024-04-26 16:02:14,470 >>   Num examples = 2000
[INFO|trainer.py:3619] 2024-04-26 16:02:14,470 >>   Batch size = 8
 19%|β–ˆβ–‰        | 6/32 [00:01<00:06,  4.22it/s]



[INFO|configuration_utils.py:471] 2024-04-26 16:02:22,770 >> Configuration saved in ./checkpoint-200/config.json
[INFO|configuration_utils.py:697] 2024-04-26 16:02:22,773 >> Configuration saved in ./checkpoint-200/generation_config.json
{'eval_loss': 0.6533502340316772, 'eval_runtime': 8.2763, 'eval_samples_per_second': 241.653, 'eval_steps_per_second': 3.866, 'eval_rewards/chosen': -0.06664139777421951, 'eval_rewards/rejected': -0.16173213720321655, 'eval_rewards/accuracies': 0.64453125, 'eval_rewards/margins': 0.09509073942899704, 'eval_logps/rejected': -420.6952209472656, 'eval_logps/chosen': -429.85614013671875, 'eval_logits/rejected': -3.2240023612976074, 'eval_logits/chosen': -3.2767982482910156, 'epoch': 0.42}
[INFO|modeling_utils.py:2598] 2024-04-26 16:02:32,167 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at ./checkpoint-200/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:02:32,170 >> tokenizer config file saved in ./checkpoint-200/tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:02:32,172 >> Special tokens file saved in ./checkpoint-200/special_tokens_map.json
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:02:50,674 >> tokenizer config file saved in ./tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:02:50,676 >> Special tokens file saved in ./special_tokens_map.json
[INFO|trainer.py:3397] 2024-04-26 16:02:50,704 >> Deleting older checkpoint [checkpoint-100] due to args.save_total_limit
















 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 226/478 [06:05<05:20,  1.27s/it]
















 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 250/478 [06:36<05:00,  1.32s/it]
















 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 275/478 [07:09<04:25,  1.31s/it]
















 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 300/478 [07:42<03:53,  1.31s/it][INFO|trainer.py:3614] 2024-04-26 16:05:02,769 >> ***** Running Evaluation *****
[INFO|trainer.py:3616] 2024-04-26 16:05:02,769 >>   Num examples = 2000
[INFO|trainer.py:3619] 2024-04-26 16:05:02,769 >>   Batch size = 8
 12%|β–ˆβ–Ž        | 4/32 [00:00<00:05,  5.09it/s]



[INFO|configuration_utils.py:471] 2024-04-26 16:05:11,146 >> Configuration saved in ./checkpoint-300/config.json
[INFO|configuration_utils.py:697] 2024-04-26 16:05:11,149 >> Configuration saved in ./checkpoint-300/generation_config.json
{'eval_loss': 0.6438009142875671, 'eval_runtime': 8.3559, 'eval_samples_per_second': 239.351, 'eval_steps_per_second': 3.83, 'eval_rewards/chosen': -0.10771973431110382, 'eval_rewards/rejected': -0.24101632833480835, 'eval_rewards/accuracies': 0.62109375, 'eval_rewards/margins': 0.13329659402370453, 'eval_logps/rejected': -428.6236572265625, 'eval_logps/chosen': -433.9639892578125, 'eval_logits/rejected': -3.2049574851989746, 'eval_logits/chosen': -3.2553329467773438, 'epoch': 0.63}
[INFO|modeling_utils.py:2598] 2024-04-26 16:05:20,618 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at ./checkpoint-300/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:05:20,621 >> tokenizer config file saved in ./checkpoint-300/tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:05:20,623 >> Special tokens file saved in ./checkpoint-300/special_tokens_map.json
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:05:39,112 >> tokenizer config file saved in ./tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:05:39,114 >> Special tokens file saved in ./special_tokens_map.json
[INFO|trainer.py:3397] 2024-04-26 16:05:39,143 >> Deleting older checkpoint [checkpoint-200] due to args.save_total_limit
















 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 325/478 [08:53<03:20,  1.31s/it]

















 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 351/478 [09:27<02:47,  1.32s/it]

















 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 376/478 [10:01<02:20,  1.37s/it]
















 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 400/478 [10:34<01:45,  1.35s/it][INFO|trainer.py:3614] 2024-04-26 16:07:54,737 >> ***** Running Evaluation *****
[INFO|trainer.py:3616] 2024-04-26 16:07:54,737 >>   Num examples = 2000
[INFO|trainer.py:3619] 2024-04-26 16:07:54,737 >>   Batch size = 8
 12%|β–ˆβ–Ž        | 4/32 [00:00<00:07,  3.96it/s]



[INFO|configuration_utils.py:471] 2024-04-26 16:08:03,486 >> Configuration saved in ./checkpoint-400/config.json
[INFO|configuration_utils.py:697] 2024-04-26 16:08:03,490 >> Configuration saved in ./checkpoint-400/generation_config.json
{'eval_loss': 0.6415477395057678, 'eval_runtime': 8.7287, 'eval_samples_per_second': 229.13, 'eval_steps_per_second': 3.666, 'eval_rewards/chosen': -0.10007989406585693, 'eval_rewards/rejected': -0.24366310238838196, 'eval_rewards/accuracies': 0.62109375, 'eval_rewards/margins': 0.14358317852020264, 'eval_logps/rejected': -428.88836669921875, 'eval_logps/chosen': -433.20001220703125, 'eval_logits/rejected': -3.204622507095337, 'eval_logits/chosen': -3.254263401031494, 'epoch': 0.84}
[INFO|modeling_utils.py:2598] 2024-04-26 16:08:13,074 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at ./checkpoint-400/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:08:13,077 >> tokenizer config file saved in ./checkpoint-400/tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:08:13,079 >> Special tokens file saved in ./checkpoint-400/special_tokens_map.json
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:08:31,839 >> tokenizer config file saved in ./tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:08:31,841 >> Special tokens file saved in ./special_tokens_map.json
[INFO|trainer.py:3397] 2024-04-26 16:08:31,870 >> Deleting older checkpoint [checkpoint-300] due to args.save_total_limit
















 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 425/478 [11:46<01:11,  1.35s/it]

















 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 450/478 [12:20<00:37,  1.35s/it]

















 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 475/478 [12:54<00:04,  1.35s/it]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 478/478 [12:58<00:00,  1.35s/it][INFO|trainer.py:2316] 2024-04-26 16:10:19,036 >>
Training completed. Do not forget to share your model on huggingface.co/models =)
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 478/478 [12:58<00:00,  1.63s/it]
[INFO|trainer.py:3614] 2024-04-26 16:10:19,102 >> ***** Running Evaluation *****
[INFO|trainer.py:3616] 2024-04-26 16:10:19,102 >>   Num examples = 2000
[INFO|trainer.py:3619] 2024-04-26 16:10:19,102 >>   Batch size = 8
 12%|β–ˆβ–Ž        | 4/32 [00:00<00:05,  5.08it/s]
{'train_runtime': 784.6622, 'train_samples_per_second': 77.913, 'train_steps_per_second': 0.609, 'train_loss': 0.6571792745689967, 'epoch': 1.0}
***** train metrics *****
  epoch                    =        1.0
  total_flos               =        0GF
  train_loss               =     0.6572
  train_runtime            = 0:13:04.66
  train_samples            =      61135
  train_samples_per_second =     77.913
  train_steps_per_second   =      0.609
2024-04-26 16:10:19 - INFO - __main__ - *** Training complete ***



100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 32/32 [00:08<00:00,  3.97it/s]
[INFO|trainer.py:3305] 2024-04-26 16:10:27,430 >> Saving model checkpoint to ./
[INFO|configuration_utils.py:471] 2024-04-26 16:10:27,432 >> Configuration saved in ./config.json
[INFO|configuration_utils.py:697] 2024-04-26 16:10:27,434 >> Configuration saved in ./generation_config.json
***** eval metrics *****
  epoch                   =        1.0
  eval_logits/chosen      =    -3.2544
  eval_logits/rejected    =    -3.2047
  eval_logps/chosen       =  -433.6304
  eval_logps/rejected     =  -429.4582
  eval_loss               =     0.6412
  eval_rewards/accuracies =     0.6445
  eval_rewards/chosen     =    -0.1044
  eval_rewards/margins    =      0.145
  eval_rewards/rejected   =    -0.2494
  eval_runtime            = 0:00:08.29
  eval_samples            =       2000
  eval_samples_per_second =    241.204
  eval_steps_per_second   =      3.859
2024-04-26 16:10:27 - INFO - __main__ - *** Save model ***
[INFO|modeling_utils.py:2598] 2024-04-26 16:10:37,122 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at ./model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:10:37,133 >> tokenizer config file saved in ./tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:10:37,135 >> Special tokens file saved in ./special_tokens_map.json
[INFO|trainer.py:3305] 2024-04-26 16:10:37,190 >> Saving model checkpoint to ./
[INFO|configuration_utils.py:471] 2024-04-26 16:10:37,192 >> Configuration saved in ./config.json
[INFO|configuration_utils.py:697] 2024-04-26 16:10:37,194 >> Configuration saved in ./generation_config.json
[INFO|modeling_utils.py:2598] 2024-04-26 16:10:48,100 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at ./model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:10:48,103 >> tokenizer config file saved in ./tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:10:48,105 >> Special tokens file saved in ./special_tokens_map.json
[INFO|modelcard.py:450] 2024-04-26 16:10:48,202 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
events.out.tfevents.1714147827.ip-26-0-160-225.711598.1: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:00<00:00, 5.29kB/s]
events.out.tfevents.1714147034.ip-26-0-160-225.711598.0: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21.8k/21.8k [00:00<00:00, 108kB/s]
model-00001-of-00002.safetensors:   1%|          | 32.0M/4.99G [00:00<02:33, 32.3MB/s]
events.out.tfevents.1714147034.ip-26-0-160-225.711598.0:   0%|          | 0.00/21.8k [00:00<?, ?B/s]











Upload 4 LFS files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [01:26<00:00, 21.75s/it]0:24<00:00, 57.8MB/s]:00<?, ?B/s]
[INFO|modelcard.py:450] 2024-04-26 16:12:22,694 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}, 'dataset': {'name': 'HuggingFaceH4/ultrafeedback_binarized', 'type': 'HuggingFaceH4/ultrafeedback_binarized'}}
[INFO|configuration_utils.py:471] 2024-04-26 16:12:22,700 >> Configuration saved in ./config.json
[INFO|trainer.py:3305] 2024-04-26 16:12:22,704 >> Saving model checkpoint to ./
[INFO|configuration_utils.py:471] 2024-04-26 16:12:22,706 >> Configuration saved in ./config.json
[INFO|configuration_utils.py:697] 2024-04-26 16:12:22,708 >> Configuration saved in ./generation_config.json
2024-04-26 16:12:22 - INFO - __main__ - Model saved to ./
2024-04-26 16:12:22 - INFO - __main__ - Pushing to hub...
[INFO|modeling_utils.py:2598] 2024-04-26 16:12:33,635 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at ./model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2488] 2024-04-26 16:12:33,638 >> tokenizer config file saved in ./tokenizer_config.json
[INFO|tokenization_utils_base.py:2497] 2024-04-26 16:12:33,640 >> Special tokens file saved in ./special_tokens_map.json
[INFO|modelcard.py:450] 2024-04-26 16:12:33,786 >> Dropping the following result as it does not have all the necessary fields: