File size: 1,942 Bytes
409a825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

  0%|          | 0/478 [00:00<?, ?it/s][WARNING|modeling_utils.py:1188] 2024-04-26 15:57:21,671 >> Could not estimate the number of tokens of the input, floating-point operations will not be computed
  0%|          | 2/478 [00:03<12:43,  1.60s/it]















  5%|β–Œ         | 25/478 [00:32<09:39,  1.28s/it]
















 10%|β–ˆ         | 50/478 [01:05<09:13,  1.29s/it]
















 16%|β–ˆβ–Œ        | 75/478 [01:37<08:37,  1.28s/it]















 21%|β–ˆβ–ˆ        | 100/478 [02:09<08:04,  1.28s/it][INFO|trainer.py:3614] 2024-04-26 15:59:29,412 >> ***** Running Evaluation *****
[INFO|trainer.py:3616] 2024-04-26 15:59:29,412 >>   Num examples = 2000
[INFO|trainer.py:3619] 2024-04-26 15:59:29,412 >>   Batch size = 8
  6%|β–‹         | 2/32 [00:00<00:03,  8.89it/s]



[INFO|configuration_utils.py:471] 2024-04-26 15:59:37,711 >> Configuration saved in ./checkpoint-100/config.json
[INFO|configuration_utils.py:697] 2024-04-26 15:59:37,713 >> Configuration saved in ./checkpoint-100/generation_config.json
{'eval_loss': 0.6759119629859924, 'eval_runtime': 8.2733, 'eval_samples_per_second': 241.742, 'eval_steps_per_second': 3.868, 'eval_rewards/chosen': 0.0017230990342795849, 'eval_rewards/rejected': -0.03281649947166443, 'eval_rewards/accuracies': 0.62890625, 'eval_rewards/margins': 0.0345395989716053, 'eval_logps/rejected': -407.8036804199219, 'eval_logps/chosen': -423.0196533203125, 'eval_logits/rejected': -3.2565112113952637, 'eval_logits/chosen': -3.313567638397217, 'epoch': 0.21}
[INFO|modeling_utils.py:2598] 2024-04-26 15:59:47,330 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at ./checkpoint-100/model.safetensors.index.json.
[INFO|tokenization_utils_base.py:2488] 2024-04-26 15:59:47,344 >> tokenizer config file saved in ./checkpoint-100/tokenizer_config.json