Update README.md
Browse files
README.md
CHANGED
@@ -41,23 +41,50 @@ library_name: peft
|
|
41 |
Use the following code snippet to load and generate exercises using the model:
|
42 |
|
43 |
```python
|
44 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
45 |
import torch
|
46 |
|
47 |
-
#
|
48 |
-
model_name = "
|
49 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
50 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
|
52 |
-
#
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
outputs = model.generate(**inputs, max_length=150)
|
58 |
-
generated_exercise = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
```
|
62 |
## Training Details
|
63 |
|
|
|
41 |
Use the following code snippet to load and generate exercises using the model:
|
42 |
|
43 |
```python
|
44 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
45 |
+
from peft import PeftModel, PeftConfig
|
46 |
import torch
|
47 |
|
48 |
+
# Base model name
|
49 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
|
|
|
|
50 |
|
51 |
+
# Load the base model without specifying rope_scaling
|
52 |
+
model = AutoModelForCausalLM.from_pretrained(
|
53 |
+
model_name,
|
54 |
+
device_map="auto", # Adjust based on your environment
|
55 |
+
offload_folder="./offload_dir", # Specify a folder for offloading if necessary
|
56 |
+
torch_dtype=torch.float16, # Use float16 for better performance on compatible hardware
|
57 |
+
revision="main" # Specify the correct revision if needed
|
58 |
+
)
|
59 |
|
60 |
+
# Load the adapter configuration
|
61 |
+
config = PeftConfig.from_pretrained("sanaa-11/mathematic-exercice-generator")
|
|
|
|
|
62 |
|
63 |
+
# Load the adapter weights into the model
|
64 |
+
model = PeftModel.from_pretrained(model, "sanaa-11/mathematic-exercice-generator")
|
65 |
+
|
66 |
+
# Load the tokenizer
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
68 |
+
```
|
69 |
+
```
|
70 |
+
generated_text = ""
|
71 |
+
prompt = "Fournis un exercice basé sur la vie reelle de difficulté moyenne de niveau 2 annee college sur les fractions."
|
72 |
+
for _ in range(5):
|
73 |
+
inputs = tokenizer(prompt + generated_text, return_tensors="pt").to(model.device)
|
74 |
+
outputs = model.generate(
|
75 |
+
**inputs,
|
76 |
+
max_length=1065,
|
77 |
+
temperature=0.7,
|
78 |
+
top_p=0.9,
|
79 |
+
num_beams=5,
|
80 |
+
repetition_penalty=1.2,
|
81 |
+
no_repeat_ngram_size=2,
|
82 |
+
pad_token_id=tokenizer.eos_token_id,
|
83 |
+
early_stopping=False
|
84 |
+
)
|
85 |
+
new_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
86 |
+
generated_text += new_text
|
87 |
+
print(new_text)
|
88 |
```
|
89 |
## Training Details
|
90 |
|