File size: 2,143 Bytes
e85504b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: mit
base_model: facebook/bart-large-mnli
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bart-large-mnli_17082023T105959
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-mnli_17082023T105959
This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6389
- Accuracy: 0.2557
- F1: 0.0679
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 142 | 1.7430 | 0.2469 | 0.0660 |
| No log | 2.0 | 284 | 1.9870 | 0.2469 | 0.0660 |
| No log | 2.99 | 426 | 1.7077 | 0.2346 | 0.0633 |
| 1.7955 | 4.0 | 569 | 1.6547 | 0.2469 | 0.0660 |
| 1.7955 | 5.0 | 711 | 1.6806 | 0.2557 | 0.0679 |
| 1.7955 | 6.0 | 853 | 1.6825 | 0.2469 | 0.0660 |
| 1.7955 | 6.99 | 995 | 1.6563 | 0.2557 | 0.0679 |
| 1.6691 | 8.0 | 1138 | 1.6473 | 0.2346 | 0.0633 |
| 1.6691 | 9.0 | 1280 | 1.6931 | 0.2557 | 0.0679 |
| 1.6691 | 9.98 | 1420 | 1.6389 | 0.2557 | 0.0679 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|