File size: 2,143 Bytes
e85504b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: mit
base_model: facebook/bart-large-mnli
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bart-large-mnli_17082023T105959
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-mnli_17082023T105959

This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6389
- Accuracy: 0.2557
- F1: 0.0679

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 1.0   | 142  | 1.7430          | 0.2469   | 0.0660 |
| No log        | 2.0   | 284  | 1.9870          | 0.2469   | 0.0660 |
| No log        | 2.99  | 426  | 1.7077          | 0.2346   | 0.0633 |
| 1.7955        | 4.0   | 569  | 1.6547          | 0.2469   | 0.0660 |
| 1.7955        | 5.0   | 711  | 1.6806          | 0.2557   | 0.0679 |
| 1.7955        | 6.0   | 853  | 1.6825          | 0.2469   | 0.0660 |
| 1.7955        | 6.99  | 995  | 1.6563          | 0.2557   | 0.0679 |
| 1.6691        | 8.0   | 1138 | 1.6473          | 0.2346   | 0.0633 |
| 1.6691        | 9.0   | 1280 | 1.6931          | 0.2557   | 0.0679 |
| 1.6691        | 9.98  | 1420 | 1.6389          | 0.2557   | 0.0679 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3