File size: 3,059 Bytes
173733b 37c3ef5 173733b 37c3ef5 173733b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: parking-utcustom-train-SF-RGB-b5_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# parking-utcustom-train-SF-RGB-b5_1
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/parking-utcustom-train dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3336
- Mean Iou: 0.3310
- Mean Accuracy: 0.9930
- Overall Accuracy: 0.9930
- Accuracy Unlabeled: nan
- Accuracy Parking: nan
- Accuracy Unparking: 0.9930
- Iou Unlabeled: 0.0
- Iou Parking: 0.0
- Iou Unparking: 0.9930
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Parking | Accuracy Unparking | Iou Unlabeled | Iou Parking | Iou Unparking |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 0.7453 | 20.0 | 20 | 0.7553 | 0.3187 | 0.9562 | 0.9562 | nan | nan | 0.9562 | 0.0 | 0.0 | 0.9562 |
| 0.5909 | 40.0 | 40 | 0.5185 | 0.3316 | 0.9948 | 0.9948 | nan | nan | 0.9948 | 0.0 | 0.0 | 0.9948 |
| 0.473 | 60.0 | 60 | 0.3947 | 0.3327 | 0.9982 | 0.9982 | nan | nan | 0.9982 | 0.0 | 0.0 | 0.9982 |
| 0.4101 | 80.0 | 80 | 0.3458 | 0.3325 | 0.9975 | 0.9975 | nan | nan | 0.9975 | 0.0 | 0.0 | 0.9975 |
| 0.3731 | 100.0 | 100 | 0.3418 | 0.3315 | 0.9945 | 0.9945 | nan | nan | 0.9945 | 0.0 | 0.0 | 0.9945 |
| 0.3575 | 120.0 | 120 | 0.3336 | 0.3310 | 0.9930 | 0.9930 | nan | nan | 0.9930 | 0.0 | 0.0 | 0.9930 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|