File size: 2,739 Bytes
426e59a
 
 
 
 
 
 
 
 
7a6d7cd
426e59a
 
 
 
 
 
 
 
 
 
 
 
741d601
 
 
 
 
426e59a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8057ed
426e59a
 
 
b8057ed
 
741d601
 
 
 
 
 
 
 
 
 
 
 
 
426e59a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
base_model: CAMeL-Lab/bert-base-arabic-camelbert-ca
model-index:
- name: POEMS-CAMELBERT-CA-RUN4-20-fullDatafreez
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# POEMS-CAMELBERT-CA-RUN4-20-fullDatafreez

This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-ca](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2919
- Accuracy: 0.7047
- F1: 0.7047
- Precision: 0.7047
- Recall: 0.7047

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 13

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.1886        | 1.0   | 695  | 1.0872          | 0.5447   | 0.5447 | 0.5447    | 0.5447 |
| 1.0357        | 2.0   | 1390 | 1.0129          | 0.5831   | 0.5831 | 0.5831    | 0.5831 |
| 0.9067        | 3.0   | 2085 | 1.0089          | 0.5954   | 0.5954 | 0.5954    | 0.5954 |
| 0.7858        | 4.0   | 2780 | 0.9204          | 0.6453   | 0.6453 | 0.6453    | 0.6453 |
| 0.6709        | 5.0   | 3475 | 0.9971          | 0.6442   | 0.6442 | 0.6442    | 0.6442 |
| 0.582         | 6.0   | 4170 | 0.9662          | 0.6739   | 0.6739 | 0.6739    | 0.6739 |
| 0.5098        | 7.0   | 4865 | 1.0057          | 0.6855   | 0.6855 | 0.6855    | 0.6855 |
| 0.4498        | 8.0   | 5560 | 1.1139          | 0.6851   | 0.6851 | 0.6851    | 0.6851 |
| 0.4037        | 9.0   | 6255 | 1.1494          | 0.6862   | 0.6862 | 0.6862    | 0.6862 |
| 0.3609        | 10.0  | 6950 | 1.1697          | 0.6996   | 0.6996 | 0.6996    | 0.6996 |
| 0.3328        | 11.0  | 7645 | 1.2636          | 0.6967   | 0.6967 | 0.6967    | 0.6967 |
| 0.3092        | 12.0  | 8340 | 1.2772          | 0.6956   | 0.6956 | 0.6956    | 0.6956 |
| 0.2943        | 13.0  | 9035 | 1.2919          | 0.7047   | 0.7047 | 0.7047    | 0.7047 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2