salbatarni commited on
Commit
9e3acc3
·
verified ·
1 Parent(s): 389c5e8

End of training

Browse files
Files changed (1) hide show
  1. README.md +87 -87
README.md CHANGED
@@ -3,20 +3,20 @@ base_model: aubmindlab/bert-base-arabertv02
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: arabert_cross_relevance_task6_fold0
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
- # arabert_cross_relevance_task6_fold0
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.2663
18
- - Qwk: 0.1037
19
- - Mse: 0.2666
20
 
21
  ## Model description
22
 
@@ -45,88 +45,88 @@ The following hyperparameters were used during training:
45
 
46
  ### Training results
47
 
48
- | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
- |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
50
- | No log | 0.125 | 2 | 0.6210 | 0.0393 | 0.6211 |
51
- | No log | 0.25 | 4 | 0.2908 | 0.1547 | 0.2908 |
52
- | No log | 0.375 | 6 | 0.2874 | 0.0578 | 0.2874 |
53
- | No log | 0.5 | 8 | 0.4029 | 0.0871 | 0.4030 |
54
- | No log | 0.625 | 10 | 0.3376 | 0.0431 | 0.3380 |
55
- | No log | 0.75 | 12 | 0.2435 | 0.0180 | 0.2438 |
56
- | No log | 0.875 | 14 | 0.2523 | 0.0961 | 0.2524 |
57
- | No log | 1.0 | 16 | 0.2567 | 0.1388 | 0.2568 |
58
- | No log | 1.125 | 18 | 0.2419 | 0.0918 | 0.2421 |
59
- | No log | 1.25 | 20 | 0.2428 | 0.1144 | 0.2430 |
60
- | No log | 1.375 | 22 | 0.2547 | 0.1135 | 0.2549 |
61
- | No log | 1.5 | 24 | 0.2577 | 0.1333 | 0.2580 |
62
- | No log | 1.625 | 26 | 0.2622 | 0.1251 | 0.2625 |
63
- | No log | 1.75 | 28 | 0.2584 | 0.1527 | 0.2587 |
64
- | No log | 1.875 | 30 | 0.2572 | 0.1427 | 0.2574 |
65
- | No log | 2.0 | 32 | 0.2550 | 0.1355 | 0.2552 |
66
- | No log | 2.125 | 34 | 0.2553 | 0.1382 | 0.2554 |
67
- | No log | 2.25 | 36 | 0.2485 | 0.1178 | 0.2486 |
68
- | No log | 2.375 | 38 | 0.2485 | 0.0965 | 0.2487 |
69
- | No log | 2.5 | 40 | 0.2463 | 0.0999 | 0.2465 |
70
- | No log | 2.625 | 42 | 0.2473 | 0.1607 | 0.2475 |
71
- | No log | 2.75 | 44 | 0.2547 | 0.2134 | 0.2549 |
72
- | No log | 2.875 | 46 | 0.2547 | 0.1888 | 0.2549 |
73
- | No log | 3.0 | 48 | 0.2540 | 0.1555 | 0.2542 |
74
- | No log | 3.125 | 50 | 0.2562 | 0.1232 | 0.2565 |
75
- | No log | 3.25 | 52 | 0.2605 | 0.1037 | 0.2607 |
76
- | No log | 3.375 | 54 | 0.2527 | 0.1245 | 0.2529 |
77
- | No log | 3.5 | 56 | 0.2460 | 0.1932 | 0.2462 |
78
- | No log | 3.625 | 58 | 0.2492 | 0.1938 | 0.2494 |
79
- | No log | 3.75 | 60 | 0.2473 | 0.1556 | 0.2476 |
80
- | No log | 3.875 | 62 | 0.2559 | 0.1436 | 0.2563 |
81
- | No log | 4.0 | 64 | 0.2788 | 0.0972 | 0.2792 |
82
- | No log | 4.125 | 66 | 0.2859 | 0.0972 | 0.2863 |
83
- | No log | 4.25 | 68 | 0.2581 | 0.1146 | 0.2584 |
84
- | No log | 4.375 | 70 | 0.2414 | 0.1330 | 0.2417 |
85
- | No log | 4.5 | 72 | 0.2402 | 0.1344 | 0.2404 |
86
- | No log | 4.625 | 74 | 0.2406 | 0.1345 | 0.2408 |
87
- | No log | 4.75 | 76 | 0.2471 | 0.1446 | 0.2473 |
88
- | No log | 4.875 | 78 | 0.2567 | 0.1348 | 0.2570 |
89
- | No log | 5.0 | 80 | 0.2688 | 0.1201 | 0.2692 |
90
- | No log | 5.125 | 82 | 0.2619 | 0.1313 | 0.2622 |
91
- | No log | 5.25 | 84 | 0.2502 | 0.1611 | 0.2505 |
92
- | No log | 5.375 | 86 | 0.2499 | 0.1686 | 0.2501 |
93
- | No log | 5.5 | 88 | 0.2497 | 0.1609 | 0.2499 |
94
- | No log | 5.625 | 90 | 0.2590 | 0.1279 | 0.2592 |
95
- | No log | 5.75 | 92 | 0.2625 | 0.1201 | 0.2628 |
96
- | No log | 5.875 | 94 | 0.2585 | 0.1245 | 0.2588 |
97
- | No log | 6.0 | 96 | 0.2639 | 0.1100 | 0.2642 |
98
- | No log | 6.125 | 98 | 0.2653 | 0.1135 | 0.2656 |
99
- | No log | 6.25 | 100 | 0.2567 | 0.1199 | 0.2570 |
100
- | No log | 6.375 | 102 | 0.2499 | 0.1229 | 0.2502 |
101
- | No log | 6.5 | 104 | 0.2482 | 0.1311 | 0.2484 |
102
- | No log | 6.625 | 106 | 0.2482 | 0.1244 | 0.2485 |
103
- | No log | 6.75 | 108 | 0.2511 | 0.1210 | 0.2514 |
104
- | No log | 6.875 | 110 | 0.2518 | 0.1347 | 0.2521 |
105
- | No log | 7.0 | 112 | 0.2478 | 0.1381 | 0.2481 |
106
- | No log | 7.125 | 114 | 0.2465 | 0.1415 | 0.2468 |
107
- | No log | 7.25 | 116 | 0.2476 | 0.1379 | 0.2478 |
108
- | No log | 7.375 | 118 | 0.2505 | 0.1276 | 0.2508 |
109
- | No log | 7.5 | 120 | 0.2531 | 0.1381 | 0.2534 |
110
- | No log | 7.625 | 122 | 0.2620 | 0.1056 | 0.2623 |
111
- | No log | 7.75 | 124 | 0.2719 | 0.1180 | 0.2723 |
112
- | No log | 7.875 | 126 | 0.2767 | 0.1149 | 0.2770 |
113
- | No log | 8.0 | 128 | 0.2722 | 0.1095 | 0.2726 |
114
- | No log | 8.125 | 130 | 0.2637 | 0.1146 | 0.2640 |
115
- | No log | 8.25 | 132 | 0.2588 | 0.1178 | 0.2591 |
116
- | No log | 8.375 | 134 | 0.2564 | 0.1108 | 0.2567 |
117
- | No log | 8.5 | 136 | 0.2573 | 0.1042 | 0.2576 |
118
- | No log | 8.625 | 138 | 0.2581 | 0.0976 | 0.2584 |
119
- | No log | 8.75 | 140 | 0.2594 | 0.0976 | 0.2597 |
120
- | No log | 8.875 | 142 | 0.2629 | 0.0979 | 0.2632 |
121
- | No log | 9.0 | 144 | 0.2665 | 0.0946 | 0.2669 |
122
- | No log | 9.125 | 146 | 0.2676 | 0.0946 | 0.2679 |
123
- | No log | 9.25 | 148 | 0.2670 | 0.0946 | 0.2673 |
124
- | No log | 9.375 | 150 | 0.2667 | 0.0946 | 0.2671 |
125
- | No log | 9.5 | 152 | 0.2663 | 0.0979 | 0.2666 |
126
- | No log | 9.625 | 154 | 0.2661 | 0.0979 | 0.2664 |
127
- | No log | 9.75 | 156 | 0.2659 | 0.0979 | 0.2663 |
128
- | No log | 9.875 | 158 | 0.2661 | 0.1037 | 0.2664 |
129
- | No log | 10.0 | 160 | 0.2663 | 0.1037 | 0.2666 |
130
 
131
 
132
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: arabert_cross_relevance_task6_fold1
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
+ # arabert_cross_relevance_task6_fold1
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.1940
18
+ - Qwk: 0.0307
19
+ - Mse: 0.1940
20
 
21
  ## Model description
22
 
 
45
 
46
  ### Training results
47
 
48
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|
50
+ | No log | 0.125 | 2 | 0.7363 | -0.0058 | 0.7363 |
51
+ | No log | 0.25 | 4 | 0.1881 | 0.0012 | 0.1881 |
52
+ | No log | 0.375 | 6 | 0.1606 | 0.0267 | 0.1606 |
53
+ | No log | 0.5 | 8 | 0.4512 | 0.0043 | 0.4512 |
54
+ | No log | 0.625 | 10 | 0.4525 | 0.0060 | 0.4525 |
55
+ | No log | 0.75 | 12 | 0.2338 | 0.0094 | 0.2338 |
56
+ | No log | 0.875 | 14 | 0.1664 | 0.0094 | 0.1664 |
57
+ | No log | 1.0 | 16 | 0.1743 | 0.0185 | 0.1743 |
58
+ | No log | 1.125 | 18 | 0.2334 | 0.0273 | 0.2334 |
59
+ | No log | 1.25 | 20 | 0.2489 | 0.0319 | 0.2489 |
60
+ | No log | 1.375 | 22 | 0.1857 | 0.0335 | 0.1857 |
61
+ | No log | 1.5 | 24 | 0.1610 | 0.0301 | 0.1610 |
62
+ | No log | 1.625 | 26 | 0.1692 | 0.0355 | 0.1692 |
63
+ | No log | 1.75 | 28 | 0.1989 | 0.0300 | 0.1989 |
64
+ | No log | 1.875 | 30 | 0.2050 | 0.0300 | 0.2050 |
65
+ | No log | 2.0 | 32 | 0.1869 | 0.0319 | 0.1869 |
66
+ | No log | 2.125 | 34 | 0.2181 | 0.0319 | 0.2181 |
67
+ | No log | 2.25 | 36 | 0.2092 | 0.0319 | 0.2092 |
68
+ | No log | 2.375 | 38 | 0.1582 | 0.0355 | 0.1582 |
69
+ | No log | 2.5 | 40 | 0.1522 | 0.0425 | 0.1522 |
70
+ | No log | 2.625 | 42 | 0.1547 | 0.0342 | 0.1547 |
71
+ | No log | 2.75 | 44 | 0.1614 | 0.0273 | 0.1614 |
72
+ | No log | 2.875 | 46 | 0.1863 | 0.0273 | 0.1863 |
73
+ | No log | 3.0 | 48 | 0.2170 | 0.0273 | 0.2170 |
74
+ | No log | 3.125 | 50 | 0.2013 | 0.0254 | 0.2013 |
75
+ | No log | 3.25 | 52 | 0.1678 | 0.0254 | 0.1678 |
76
+ | No log | 3.375 | 54 | 0.1689 | 0.0254 | 0.1689 |
77
+ | No log | 3.5 | 56 | 0.1680 | 0.0254 | 0.1680 |
78
+ | No log | 3.625 | 58 | 0.1692 | 0.0273 | 0.1692 |
79
+ | No log | 3.75 | 60 | 0.1633 | 0.0307 | 0.1633 |
80
+ | No log | 3.875 | 62 | 0.1712 | 0.0307 | 0.1712 |
81
+ | No log | 4.0 | 64 | 0.1638 | 0.0324 | 0.1638 |
82
+ | No log | 4.125 | 66 | 0.1666 | 0.0410 | 0.1666 |
83
+ | No log | 4.25 | 68 | 0.1931 | 0.0316 | 0.1931 |
84
+ | No log | 4.375 | 70 | 0.1935 | 0.0332 | 0.1935 |
85
+ | No log | 4.5 | 72 | 0.1622 | 0.0407 | 0.1622 |
86
+ | No log | 4.625 | 74 | 0.1528 | 0.0502 | 0.1528 |
87
+ | No log | 4.75 | 76 | 0.1546 | 0.0427 | 0.1546 |
88
+ | No log | 4.875 | 78 | 0.1610 | 0.0373 | 0.1610 |
89
+ | No log | 5.0 | 80 | 0.1796 | 0.0324 | 0.1796 |
90
+ | No log | 5.125 | 82 | 0.1905 | 0.0287 | 0.1905 |
91
+ | No log | 5.25 | 84 | 0.1795 | 0.0355 | 0.1795 |
92
+ | No log | 5.375 | 86 | 0.1867 | 0.0287 | 0.1867 |
93
+ | No log | 5.5 | 88 | 0.2057 | 0.0372 | 0.2057 |
94
+ | No log | 5.625 | 90 | 0.2005 | 0.0352 | 0.2005 |
95
+ | No log | 5.75 | 92 | 0.1798 | 0.0304 | 0.1798 |
96
+ | No log | 5.875 | 94 | 0.1808 | 0.0287 | 0.1808 |
97
+ | No log | 6.0 | 96 | 0.1804 | 0.0307 | 0.1804 |
98
+ | No log | 6.125 | 98 | 0.1740 | 0.0307 | 0.1740 |
99
+ | No log | 6.25 | 100 | 0.1812 | 0.0307 | 0.1812 |
100
+ | No log | 6.375 | 102 | 0.1920 | 0.0307 | 0.1920 |
101
+ | No log | 6.5 | 104 | 0.1897 | 0.0287 | 0.1897 |
102
+ | No log | 6.625 | 106 | 0.1990 | 0.0287 | 0.1990 |
103
+ | No log | 6.75 | 108 | 0.2005 | 0.0287 | 0.2005 |
104
+ | No log | 6.875 | 110 | 0.2110 | 0.0251 | 0.2110 |
105
+ | No log | 7.0 | 112 | 0.2243 | 0.0251 | 0.2243 |
106
+ | No log | 7.125 | 114 | 0.2176 | 0.0270 | 0.2176 |
107
+ | No log | 7.25 | 116 | 0.2051 | 0.0307 | 0.2051 |
108
+ | No log | 7.375 | 118 | 0.1875 | 0.0359 | 0.1875 |
109
+ | No log | 7.5 | 120 | 0.1841 | 0.0359 | 0.1841 |
110
+ | No log | 7.625 | 122 | 0.1903 | 0.0307 | 0.1903 |
111
+ | No log | 7.75 | 124 | 0.2160 | 0.0290 | 0.2160 |
112
+ | No log | 7.875 | 126 | 0.2336 | 0.0290 | 0.2336 |
113
+ | No log | 8.0 | 128 | 0.2472 | 0.0290 | 0.2472 |
114
+ | No log | 8.125 | 130 | 0.2417 | 0.0290 | 0.2417 |
115
+ | No log | 8.25 | 132 | 0.2168 | 0.0290 | 0.2168 |
116
+ | No log | 8.375 | 134 | 0.1854 | 0.0342 | 0.1854 |
117
+ | No log | 8.5 | 136 | 0.1717 | 0.0377 | 0.1717 |
118
+ | No log | 8.625 | 138 | 0.1718 | 0.0377 | 0.1718 |
119
+ | No log | 8.75 | 140 | 0.1803 | 0.0342 | 0.1803 |
120
+ | No log | 8.875 | 142 | 0.1951 | 0.0307 | 0.1951 |
121
+ | No log | 9.0 | 144 | 0.2030 | 0.0307 | 0.2030 |
122
+ | No log | 9.125 | 146 | 0.2104 | 0.0270 | 0.2104 |
123
+ | No log | 9.25 | 148 | 0.2101 | 0.0270 | 0.2101 |
124
+ | No log | 9.375 | 150 | 0.2065 | 0.0287 | 0.2065 |
125
+ | No log | 9.5 | 152 | 0.2028 | 0.0307 | 0.2028 |
126
+ | No log | 9.625 | 154 | 0.1984 | 0.0307 | 0.1984 |
127
+ | No log | 9.75 | 156 | 0.1954 | 0.0307 | 0.1954 |
128
+ | No log | 9.875 | 158 | 0.1942 | 0.0307 | 0.1942 |
129
+ | No log | 10.0 | 160 | 0.1940 | 0.0307 | 0.1940 |
130
 
131
 
132
  ### Framework versions