salbatarni commited on
Commit
29cd28d
·
verified ·
1 Parent(s): 54e4be4

End of training

Browse files
Files changed (1) hide show
  1. README.md +80 -80
README.md CHANGED
@@ -3,20 +3,20 @@ base_model: aubmindlab/bert-base-arabertv02
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: arabert_cross_development_task1_fold5
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
- # arabert_cross_development_task1_fold5
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.3225
18
- - Qwk: 0.7089
19
- - Mse: 0.3218
20
 
21
  ## Model description
22
 
@@ -47,81 +47,81 @@ The following hyperparameters were used during training:
47
 
48
  | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
  |:-------------:|:------:|:----:|:---------------:|:------:|:------:|
50
- | No log | 0.1333 | 2 | 1.6054 | 0.1118 | 1.6042 |
51
- | No log | 0.2667 | 4 | 0.7796 | 0.3420 | 0.7792 |
52
- | No log | 0.4 | 6 | 0.8606 | 0.4875 | 0.8600 |
53
- | No log | 0.5333 | 8 | 0.7185 | 0.6145 | 0.7176 |
54
- | No log | 0.6667 | 10 | 0.4960 | 0.5784 | 0.4951 |
55
- | No log | 0.8 | 12 | 0.4504 | 0.5814 | 0.4497 |
56
- | No log | 0.9333 | 14 | 0.4103 | 0.6104 | 0.4096 |
57
- | No log | 1.0667 | 16 | 0.3725 | 0.6808 | 0.3715 |
58
- | No log | 1.2 | 18 | 0.4101 | 0.8013 | 0.4091 |
59
- | No log | 1.3333 | 20 | 0.3292 | 0.7235 | 0.3286 |
60
- | No log | 1.4667 | 22 | 0.3212 | 0.6809 | 0.3206 |
61
- | No log | 1.6 | 24 | 0.3406 | 0.7512 | 0.3398 |
62
- | No log | 1.7333 | 26 | 0.3852 | 0.7534 | 0.3842 |
63
- | No log | 1.8667 | 28 | 0.3920 | 0.7341 | 0.3909 |
64
- | No log | 2.0 | 30 | 0.4486 | 0.7835 | 0.4475 |
65
- | No log | 2.1333 | 32 | 0.4015 | 0.7929 | 0.4005 |
66
- | No log | 2.2667 | 34 | 0.2966 | 0.7228 | 0.2959 |
67
- | No log | 2.4 | 36 | 0.3163 | 0.6675 | 0.3156 |
68
- | No log | 2.5333 | 38 | 0.2965 | 0.7270 | 0.2958 |
69
- | No log | 2.6667 | 40 | 0.3334 | 0.7868 | 0.3325 |
70
- | No log | 2.8 | 42 | 0.3892 | 0.7967 | 0.3882 |
71
- | No log | 2.9333 | 44 | 0.3635 | 0.7640 | 0.3626 |
72
- | No log | 3.0667 | 46 | 0.3415 | 0.7020 | 0.3408 |
73
- | No log | 3.2 | 48 | 0.3452 | 0.6985 | 0.3445 |
74
- | No log | 3.3333 | 50 | 0.3467 | 0.7485 | 0.3460 |
75
- | No log | 3.4667 | 52 | 0.3606 | 0.7778 | 0.3598 |
76
- | No log | 3.6 | 54 | 0.3419 | 0.7735 | 0.3412 |
77
- | No log | 3.7333 | 56 | 0.3217 | 0.7477 | 0.3210 |
78
- | No log | 3.8667 | 58 | 0.3254 | 0.6951 | 0.3248 |
79
- | No log | 4.0 | 60 | 0.3366 | 0.6811 | 0.3360 |
80
- | No log | 4.1333 | 62 | 0.3255 | 0.7328 | 0.3248 |
81
- | No log | 4.2667 | 64 | 0.3255 | 0.7574 | 0.3248 |
82
- | No log | 4.4 | 66 | 0.3264 | 0.7713 | 0.3257 |
83
- | No log | 4.5333 | 68 | 0.3260 | 0.7538 | 0.3253 |
84
- | No log | 4.6667 | 70 | 0.3303 | 0.7599 | 0.3295 |
85
- | No log | 4.8 | 72 | 0.3278 | 0.7285 | 0.3270 |
86
- | No log | 4.9333 | 74 | 0.3399 | 0.7039 | 0.3391 |
87
- | No log | 5.0667 | 76 | 0.3696 | 0.6751 | 0.3689 |
88
- | No log | 5.2 | 78 | 0.3565 | 0.6740 | 0.3558 |
89
- | No log | 5.3333 | 80 | 0.3177 | 0.7247 | 0.3171 |
90
- | No log | 5.4667 | 82 | 0.3107 | 0.7637 | 0.3100 |
91
- | No log | 5.6 | 84 | 0.3037 | 0.7643 | 0.3031 |
92
- | No log | 5.7333 | 86 | 0.2968 | 0.7380 | 0.2962 |
93
- | No log | 5.8667 | 88 | 0.3026 | 0.6895 | 0.3020 |
94
- | No log | 6.0 | 90 | 0.2948 | 0.7283 | 0.2942 |
95
- | No log | 6.1333 | 92 | 0.2968 | 0.7351 | 0.2962 |
96
- | No log | 6.2667 | 94 | 0.3054 | 0.6898 | 0.3048 |
97
- | No log | 6.4 | 96 | 0.3335 | 0.6564 | 0.3329 |
98
- | No log | 6.5333 | 98 | 0.3257 | 0.6723 | 0.3250 |
99
- | No log | 6.6667 | 100 | 0.3148 | 0.7398 | 0.3141 |
100
- | No log | 6.8 | 102 | 0.3244 | 0.7519 | 0.3237 |
101
- | No log | 6.9333 | 104 | 0.3201 | 0.7549 | 0.3194 |
102
- | No log | 7.0667 | 106 | 0.3197 | 0.7204 | 0.3190 |
103
- | No log | 7.2 | 108 | 0.3241 | 0.7042 | 0.3234 |
104
- | No log | 7.3333 | 110 | 0.3257 | 0.7232 | 0.3250 |
105
- | No log | 7.4667 | 112 | 0.3300 | 0.7399 | 0.3293 |
106
- | No log | 7.6 | 114 | 0.3300 | 0.7379 | 0.3292 |
107
- | No log | 7.7333 | 116 | 0.3299 | 0.7286 | 0.3292 |
108
- | No log | 7.8667 | 118 | 0.3273 | 0.7096 | 0.3266 |
109
- | No log | 8.0 | 120 | 0.3291 | 0.6958 | 0.3284 |
110
- | No log | 8.1333 | 122 | 0.3265 | 0.6826 | 0.3258 |
111
- | No log | 8.2667 | 124 | 0.3190 | 0.7007 | 0.3182 |
112
- | No log | 8.4 | 126 | 0.3131 | 0.7151 | 0.3123 |
113
- | No log | 8.5333 | 128 | 0.3135 | 0.7284 | 0.3127 |
114
- | No log | 8.6667 | 130 | 0.3156 | 0.7284 | 0.3148 |
115
- | No log | 8.8 | 132 | 0.3172 | 0.7253 | 0.3164 |
116
- | No log | 8.9333 | 134 | 0.3198 | 0.7157 | 0.3190 |
117
- | No log | 9.0667 | 136 | 0.3222 | 0.7034 | 0.3214 |
118
- | No log | 9.2 | 138 | 0.3213 | 0.7089 | 0.3205 |
119
- | No log | 9.3333 | 140 | 0.3194 | 0.7170 | 0.3186 |
120
- | No log | 9.4667 | 142 | 0.3189 | 0.7241 | 0.3181 |
121
- | No log | 9.6 | 144 | 0.3199 | 0.7239 | 0.3191 |
122
- | No log | 9.7333 | 146 | 0.3215 | 0.7103 | 0.3207 |
123
- | No log | 9.8667 | 148 | 0.3223 | 0.7089 | 0.3215 |
124
- | No log | 10.0 | 150 | 0.3225 | 0.7089 | 0.3218 |
125
 
126
 
127
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: arabert_cross_development_task1_fold6
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
+ # arabert_cross_development_task1_fold6
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.6885
18
+ - Qwk: 0.4652
19
+ - Mse: 0.6865
20
 
21
  ## Model description
22
 
 
47
 
48
  | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
  |:-------------:|:------:|:----:|:---------------:|:------:|:------:|
50
+ | No log | 0.1333 | 2 | 2.5610 | 0.0172 | 2.5631 |
51
+ | No log | 0.2667 | 4 | 1.3092 | 0.0773 | 1.3077 |
52
+ | No log | 0.4 | 6 | 0.6287 | 0.4047 | 0.6286 |
53
+ | No log | 0.5333 | 8 | 0.7953 | 0.4436 | 0.7955 |
54
+ | No log | 0.6667 | 10 | 0.6050 | 0.3695 | 0.6046 |
55
+ | No log | 0.8 | 12 | 0.5414 | 0.3312 | 0.5412 |
56
+ | No log | 0.9333 | 14 | 0.3774 | 0.5165 | 0.3781 |
57
+ | No log | 1.0667 | 16 | 0.3713 | 0.5340 | 0.3720 |
58
+ | No log | 1.2 | 18 | 0.3244 | 0.5756 | 0.3250 |
59
+ | No log | 1.3333 | 20 | 0.3167 | 0.6313 | 0.3171 |
60
+ | No log | 1.4667 | 22 | 0.3711 | 0.6258 | 0.3708 |
61
+ | No log | 1.6 | 24 | 0.3620 | 0.6705 | 0.3621 |
62
+ | No log | 1.7333 | 26 | 0.3546 | 0.6894 | 0.3547 |
63
+ | No log | 1.8667 | 28 | 0.3904 | 0.5542 | 0.3900 |
64
+ | No log | 2.0 | 30 | 0.4427 | 0.4960 | 0.4420 |
65
+ | No log | 2.1333 | 32 | 0.4085 | 0.5287 | 0.4081 |
66
+ | No log | 2.2667 | 34 | 0.3250 | 0.6490 | 0.3251 |
67
+ | No log | 2.4 | 36 | 0.3625 | 0.7352 | 0.3630 |
68
+ | No log | 2.5333 | 38 | 0.3719 | 0.7111 | 0.3719 |
69
+ | No log | 2.6667 | 40 | 0.4472 | 0.5221 | 0.4462 |
70
+ | No log | 2.8 | 42 | 0.5148 | 0.4902 | 0.5136 |
71
+ | No log | 2.9333 | 44 | 0.4050 | 0.5405 | 0.4043 |
72
+ | No log | 3.0667 | 46 | 0.3378 | 0.6397 | 0.3376 |
73
+ | No log | 3.2 | 48 | 0.3496 | 0.5949 | 0.3493 |
74
+ | No log | 3.3333 | 50 | 0.3447 | 0.6021 | 0.3444 |
75
+ | No log | 3.4667 | 52 | 0.3460 | 0.5885 | 0.3457 |
76
+ | No log | 3.6 | 54 | 0.3308 | 0.6420 | 0.3306 |
77
+ | No log | 3.7333 | 56 | 0.3377 | 0.6102 | 0.3374 |
78
+ | No log | 3.8667 | 58 | 0.3579 | 0.5907 | 0.3575 |
79
+ | No log | 4.0 | 60 | 0.3816 | 0.5790 | 0.3810 |
80
+ | No log | 4.1333 | 62 | 0.4251 | 0.5479 | 0.4242 |
81
+ | No log | 4.2667 | 64 | 0.4317 | 0.5444 | 0.4308 |
82
+ | No log | 4.4 | 66 | 0.5698 | 0.4745 | 0.5684 |
83
+ | No log | 4.5333 | 68 | 0.5338 | 0.4833 | 0.5325 |
84
+ | No log | 4.6667 | 70 | 0.4617 | 0.5347 | 0.4607 |
85
+ | No log | 4.8 | 72 | 0.4937 | 0.4804 | 0.4925 |
86
+ | No log | 4.9333 | 74 | 0.5167 | 0.4702 | 0.5156 |
87
+ | No log | 5.0667 | 76 | 0.4987 | 0.4743 | 0.4977 |
88
+ | No log | 5.2 | 78 | 0.5594 | 0.4792 | 0.5582 |
89
+ | No log | 5.3333 | 80 | 0.5679 | 0.4788 | 0.5667 |
90
+ | No log | 5.4667 | 82 | 0.5202 | 0.4874 | 0.5190 |
91
+ | No log | 5.6 | 84 | 0.5297 | 0.4891 | 0.5284 |
92
+ | No log | 5.7333 | 86 | 0.4835 | 0.4882 | 0.4825 |
93
+ | No log | 5.8667 | 88 | 0.5151 | 0.4891 | 0.5140 |
94
+ | No log | 6.0 | 90 | 0.6542 | 0.4666 | 0.6526 |
95
+ | No log | 6.1333 | 92 | 0.7260 | 0.4338 | 0.7242 |
96
+ | No log | 6.2667 | 94 | 0.5806 | 0.4788 | 0.5791 |
97
+ | No log | 6.4 | 96 | 0.4674 | 0.5006 | 0.4664 |
98
+ | No log | 6.5333 | 98 | 0.4558 | 0.5000 | 0.4549 |
99
+ | No log | 6.6667 | 100 | 0.5518 | 0.4839 | 0.5504 |
100
+ | No log | 6.8 | 102 | 0.6844 | 0.4344 | 0.6825 |
101
+ | No log | 6.9333 | 104 | 0.6391 | 0.4542 | 0.6374 |
102
+ | No log | 7.0667 | 106 | 0.5221 | 0.5072 | 0.5208 |
103
+ | No log | 7.2 | 108 | 0.5030 | 0.5053 | 0.5018 |
104
+ | No log | 7.3333 | 110 | 0.5677 | 0.4910 | 0.5661 |
105
+ | No log | 7.4667 | 112 | 0.6657 | 0.4587 | 0.6638 |
106
+ | No log | 7.6 | 114 | 0.6913 | 0.4396 | 0.6893 |
107
+ | No log | 7.7333 | 116 | 0.6322 | 0.4662 | 0.6303 |
108
+ | No log | 7.8667 | 118 | 0.5615 | 0.4847 | 0.5599 |
109
+ | No log | 8.0 | 120 | 0.5037 | 0.5192 | 0.5025 |
110
+ | No log | 8.1333 | 122 | 0.4986 | 0.5275 | 0.4974 |
111
+ | No log | 8.2667 | 124 | 0.5375 | 0.4975 | 0.5361 |
112
+ | No log | 8.4 | 126 | 0.6271 | 0.4694 | 0.6252 |
113
+ | No log | 8.5333 | 128 | 0.7181 | 0.4380 | 0.7160 |
114
+ | No log | 8.6667 | 130 | 0.7262 | 0.4320 | 0.7241 |
115
+ | No log | 8.8 | 132 | 0.6675 | 0.4566 | 0.6655 |
116
+ | No log | 8.9333 | 134 | 0.5875 | 0.4826 | 0.5859 |
117
+ | No log | 9.0667 | 136 | 0.5616 | 0.4930 | 0.5602 |
118
+ | No log | 9.2 | 138 | 0.5683 | 0.4914 | 0.5668 |
119
+ | No log | 9.3333 | 140 | 0.5908 | 0.4826 | 0.5892 |
120
+ | No log | 9.4667 | 142 | 0.6226 | 0.4814 | 0.6208 |
121
+ | No log | 9.6 | 144 | 0.6525 | 0.4656 | 0.6507 |
122
+ | No log | 9.7333 | 146 | 0.6742 | 0.4610 | 0.6723 |
123
+ | No log | 9.8667 | 148 | 0.6879 | 0.4652 | 0.6859 |
124
+ | No log | 10.0 | 150 | 0.6885 | 0.4652 | 0.6865 |
125
 
126
 
127
  ### Framework versions