Upload llm_router.py with huggingface_hub
Browse files- llm_router.py +33 -0
llm_router.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from txtai.pipeline import Labels
|
2 |
+
|
3 |
+
class InstructionClassifier:
|
4 |
+
def __init__(self):
|
5 |
+
# Initialize the labels model
|
6 |
+
self.labels = Labels('facebook/bart-large-mnli')
|
7 |
+
|
8 |
+
self.tags = [
|
9 |
+
"Programming",
|
10 |
+
"Factual",
|
11 |
+
"Creative Writing",
|
12 |
+
"Roleplaying"
|
13 |
+
]
|
14 |
+
|
15 |
+
self.tools_labels = ["Real Time Information needed: Available in Internet",
|
16 |
+
"Historic Information needed: Available in Wikipedia",
|
17 |
+
"Sufficient Information"]
|
18 |
+
|
19 |
+
|
20 |
+
def classify_instructions(self, data):
|
21 |
+
result = []
|
22 |
+
for text in data:
|
23 |
+
# Predict tags
|
24 |
+
tag_labels_result = self.labels(text, self.tags)
|
25 |
+
tag_label = self.tags[tag_labels_result[0][0]] if tag_labels_result[0][0] < len(self.tags) else "Unknown"
|
26 |
+
|
27 |
+
tool_labels_result = self.labels(text, self.tools_labels)
|
28 |
+
tool_label = self.tools_labels[tool_labels_result[0][0]] if tool_labels_result[0][0] < len(self.tools_labels) else "Unknown"
|
29 |
+
|
30 |
+
result.append((text, tag_label, tool_label))
|
31 |
+
return result
|
32 |
+
# Usage
|
33 |
+
classifier = InstructionClassifier()
|