Commit
·
bdba8c8
1
Parent(s):
7b23585
Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value:
|
29 |
- name: F1
|
30 |
type: f1
|
31 |
-
value:
|
32 |
- name: Recall
|
33 |
type: recall
|
34 |
-
value:
|
35 |
- name: Precision
|
36 |
type: precision
|
37 |
-
value:
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Accuracy:
|
49 |
-
- F1:
|
50 |
-
- Recall:
|
51 |
-
- Precision:
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,11 +79,11 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
|
82 |
-
|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.9857651245551602
|
29 |
- name: F1
|
30 |
type: f1
|
31 |
+
value: 0.9857500097665184
|
32 |
- name: Recall
|
33 |
type: recall
|
34 |
+
value: 0.9857651245551602
|
35 |
- name: Precision
|
36 |
type: precision
|
37 |
+
value: 0.9857741873841454
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0630
|
48 |
+
- Accuracy: 0.9858
|
49 |
+
- F1: 0.9858
|
50 |
+
- Recall: 0.9858
|
51 |
+
- Precision: 0.9858
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
|
82 |
+
| 1.379 | 1.0 | 352 | 0.2159 | 0.9310 | 0.9310 | 0.9310 | 0.9390 |
|
83 |
+
| 0.239 | 2.0 | 704 | 0.0814 | 0.9765 | 0.9766 | 0.9765 | 0.9767 |
|
84 |
+
| 0.0748 | 3.0 | 1056 | 0.0822 | 0.9808 | 0.9808 | 0.9808 | 0.9812 |
|
85 |
+
| 0.0748 | 4.0 | 1408 | 0.0651 | 0.9858 | 0.9858 | 0.9858 | 0.9858 |
|
86 |
+
| 0.0125 | 5.0 | 1760 | 0.0630 | 0.9858 | 0.9858 | 0.9858 | 0.9858 |
|
87 |
|
88 |
|
89 |
### Framework versions
|