saintzeno commited on
Commit
51da515
·
1 Parent(s): f22bbf6

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1201.73 +/- 71.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:597c6faba2a090e227fdb4178ad14d72e350b7b8a777f640e7241b70ea6b58d8
3
+ size 129528
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85c7537010>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85c75370a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85c7537130>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85c75371c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f85c7537250>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f85c75372e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f85c7537370>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85c7537400>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f85c7537490>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85c7537520>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85c75375b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85c7537640>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f85c7540d80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1688603826909144854,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "_last_obs": {
44
+ ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJrB7b2Gsha+bWEFP82h1z7P+56/sMBMP5qIYL5TshG/yg2fPniTfDxPrpk+Jj9GvmmoPD89nqu/Cn5PP0bSUL5+3hc/h65tv8jZRj6EQ4q+JV55v9h6KD+5Q98+QroSPq5CMD8cUKw+vAsAPzghST/jNT6/JpFSPv2kGj9PGHG+Ids1v8lQrz5XIbs+LyH0vrCDJj9UvRg/ZF/6PSpSvr4r9fA+iAY1v6dOSD8u2xu+6RqaP+dv9zy/cjI/yRGQvvueb79hO7s/cYa8vqZ9Ub6uQjA/HFCsPrwLAD84IUk/N5yVPVyFeT6Lkxs/SOEYPqrC372pViS/6kaRvimuJ7/IxZs+6KHmvdlHzT6hbg4/T8h8P+3AEz/GO1A/QPCovfXE3z57SqQ+Nv9LPluIDkDcpiI/3zEQvwtW6D5w+VQ/rkIwPxxQrD68CwA/ceuiv35DmD7Eej0+EQgaPx/0VL9/G7G+X7rLvoiB5z44406/mRseP+n+wr5AXaw/+BOCv9APib8kJA++l0ghvr+1jj5mAgc/DYzgPtbhFj8acrg+fJm2vnw0jj8KrbE7KOtGPq5CMD9nKj7AvAsAP3Hror+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
46
+ },
47
+ "_last_episode_starts": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
50
+ },
51
+ "_last_original_obs": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB6FQ42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANU+vPQAAAADvD96/AAAAAKQ23z0AAAAARKn3PwAAAAAtVHu9AAAAAOIA5D8AAAAA92MEvgAAAABlauC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmAf7NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLLb0TwAAAAAIuf8vwAAAABSmfY9AAAAAIpT3j8AAAAAXF4EPgAAAACT+/s/AAAAABJQCz4AAAAARS3avwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEz6WDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBxjMe9AAAAAKQc9b8AAAAAYm/OPAAAAABWkvk/AAAAAKTAobwAAAAAQOzmPwAAAABsKQW9AAAAAPeN6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACywvq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFQ7dvAAAAAAwVPW/AAAAABxtZz0AAAAACQ7tPwAAAADMINm9AAAAADDV/T8AAAAAYsNaPQAAAAD0ffC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
54
+ },
55
+ "_episode_num": 0,
56
+ "use_sde": true,
57
+ "sde_sample_freq": -1,
58
+ "_current_progress_remaining": 0.0,
59
+ "_stats_window_size": 100,
60
+ "ep_info_buffer": {
61
+ ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIt9fOUt7KKMAWyUTegDjAF0lEdArj1XuE25x3V9lChoBkdAiOUj3ueBhGgHTegDaAhHQK4+RK8tf5V1fZQoaAZHQJD0IaWHDaZoB03oA2gIR0CuRp47zTWodX2UKGgGR0CQY3iO/+KkaAdN6ANoCEdArkb9pZfUnXV9lChoBkdAkSeifthNNGgHTegDaAhHQK5KfxZMcp91fZQoaAZHQJGC7961LJ1oB03oA2gIR0CuS2UrTYukdX2UKGgGR0CR9Kp6hQFcaAdN6ANoCEdArlYEejmCAnV9lChoBkdAj3RteD3/P2gHTegDaAhHQK5Wo8HObAl1fZQoaAZHQJG2Bvn8sMBoB03oA2gIR0CuXCEG7jDLdX2UKGgGR0CMY1J4jbBXaAdN6ANoCEdArl0Tq0MPSXV9lChoBkdAkFLVvVEux2gHTegDaAhHQK5lRyCnP3V1fZQoaAZHQJKo9QuVX3hoB03oA2gIR0CuZanTqjagdX2UKGgGR0CR3TqMm4RVaAdN6ANoCEdArmkqScLBsXV9lChoBkdAkxNPn0TURWgHTegDaAhHQK5qEwX668R1fZQoaAZHQJK0ME3bVSZoB03oA2gIR0Cuc4fZM+NcdX2UKGgGR0CSCAohpxm1aAdN6ANoCEdArnQatPpIMHV9lChoBkdAkHzEADJU52gHTegDaAhHQK55zroGIKt1fZQoaAZHQJIEYTj/+85oB03oA2gIR0Cuez6PbO/tdX2UKGgGR0COxg/KyOaOaAdN6ANoCEdAroOhLqUu+XV9lChoBkdAkfdF89fTkWgHTegDaAhHQK6D/U+cH4Z1fZQoaAZHQJFwB9srNGFoB03oA2gIR0Cuh2PCdjG2dX2UKGgGR0CSA1Z6D5CXaAdN6ANoCEdArog7AJswc3V9lChoBkdAkfUo+OfdymgHTegDaAhHQK6Q5oW56MR1fZQoaAZHQJDi8HWz4UNoB03oA2gIR0CukYibc45tdX2UKGgGR0CPOi3ZPEbYaAdN6ANoCEdArpc05uIhyXV9lChoBkdAkD+P/NqxkmgHTegDaAhHQK6YpIXj2jB1fZQoaAZHQJAWI3Ns3yZoB03oA2gIR0Cuoi4gzP8idX2UKGgGR0CRAo8aGYa6aAdN6ANoCEdArqKQdp7CznV9lChoBkdAkN3/dM0xd2gHTegDaAhHQK6mEv7m+0x1fZQoaAZHQI9AfVNHpbFoB03oA2gIR0CupvQgLZzxdX2UKGgGR0CQ37e+23KCaAdN6ANoCEdArq9NZq20A3V9lChoBkdAjj7hUBGQS2gHTegDaAhHQK6vsGbkOqh1fZQoaAZHQIwjNYjjaPFoB03oA2gIR0CutOoSL61tdX2UKGgGR0CL955hScbzaAdN6ANoCEdArrZVRm9QGnV9lChoBkdAjXPYkNWluWgHTegDaAhHQK7AyKG+K0l1fZQoaAZHQIu8NlPJq7BoB03oA2gIR0CuwSwXAM2FdX2UKGgGR0CPKmOWjXWfaAdN6ANoCEdArsSqaRZED3V9lChoBkdAi68LEDQqqmgHTegDaAhHQK7FlqRlpXZ1fZQoaAZHQI1rYTwlSjxoB03oA2gIR0CuzeDL0SRKdX2UKGgGR0CMtujIq9XcaAdN6ANoCEdArs5Ia72+PHV9lChoBkdAjonDR2KVIWgHTegDaAhHQK7S6Ao5PuZ1fZQoaAZHQI0/4e7tiQVoB03oA2gIR0Cu1DdeY2KmdX2UKGgGR0BHJaoVEd/8aAdLVWgIR0Cu1fL8zhxYdX2UKGgGR0CFo+/cFhXsaAdN6ANoCEdArt8rcEeQuHV9lChoBkdAjK0NpEhJRWgHTegDaAhHQK7fjwEQoTh1fZQoaAZHQI70/CZWq95oB03oA2gIR0Cu4zM67ulXdX2UKGgGR0CMAqaDwpfAaAdN6ANoCEdAruVB8OTaCnV9lChoBkdAj8JUaAFxGWgHTegDaAhHQK7toTzundh1fZQoaAZHQIxN6WzF+/hoB03oA2gIR0Cu7jB7u2JBdX2UKGgGR0CQcpeg+QlsaAdN6ANoCEdArvUy/O+qR3V9lChoBkdAjm8hsImgJ2gHTegDaAhHQK74oJXQtz11fZQoaAZHQI35Unuy/sVoB03oA2gIR0CvAmhEroW6dX2UKGgGR0CP0C495hScaAdN6ANoCEdArwLGQp4KQnV9lChoBkdAkNt2Nm16V2gHTegDaAhHQK8GXKp1ifB1fZQoaAZHQImafoq0+khoB03oA2gIR0CvCFjJMg2ZdX2UKGgGR0CQ0FR8MNMHaAdN6ANoCEdArw+H2K2rn3V9lChoBkdAkG46+ajN6mgHTegDaAhHQK8P5A2Q4jt1fZQoaAZHQI35v752yLRoB03oA2gIR0CvE2peE7GOdX2UKGgGR0CQRxkleF+NaAdN6ANoCEdArxZGvjfelHV9lChoBkdAkrQBiobXH2gHTegDaAhHQK8g1oxHoX91fZQoaAZHQIvfN9MK1G9oB03oA2gIR0CvITiyIHkcdX2UKGgGR0CJfM6WgOBlaAdN6ANoCEdAryTUL4N7SnV9lChoBkdAhM946GQCCGgHTegDaAhHQK8m11PFefJ1fZQoaAZHQJC/M1/DtPZoB03oA2gIR0CvLg0nPVurdX2UKGgGR0CKuvlNlAeJaAdN6ANoCEdAry50Zm7J4nV9lChoBkdAjBXowEhaDGgHTegDaAhHQK8x/Zq20At1fZQoaAZHQJAv4bHZK4BoB03oA2gIR0CvNEo/zJ6qdX2UKGgGR0CQZhV7x/d7aAdN6ANoCEdArz+p/XoTwnV9lChoBkdAjeCLz5GjK2gHTegDaAhHQK9AC3kxREZ1fZQoaAZHQI+Ftmvnr6doB03oA2gIR0CvQ4sxoIv8dX2UKGgGR0COdpGUfPonaAdN6ANoCEdAr0WW+yquKXV9lChoBkdAjfe5a/yoXWgHTegDaAhHQK9NDWEsasJ1fZQoaAZHQI1hPQhOgxtoB03oA2gIR0CvTW1xbSqmdX2UKGgGR0CPSZGQ0XP7aAdN6ANoCEdAr1DpzYEns3V9lChoBkdAkEXA7kn1F2gHTegDaAhHQK9S5X/5tWN1fZQoaAZHQEx8hvitJWhoB0uEaAhHQK9VEE1VHWl1fZQoaAZHQJAWnOObRWtoB03oA2gIR0CvXYhy0a60dX2UKGgGR0COnJsHB1s+aAdN6ANoCEdAr14lzuF6A3V9lChoBkdAj95v+wTufGgHTegDaAhHQK9iOZ1mrbR1fZQoaAZHQI9Frt3OfNBoB03oA2gIR0CvZd0Xxe9jdX2UKGgGR0CJ8owPAfuDaAdN6ANoCEdAr2tC68QI2XV9lChoBkdAjVwSElE7XGgHTegDaAhHQK9roafjCHh1fZQoaAZHQIvxt3Sro4doB03oA2gIR0CvbxL92ovSdX2UKGgGR0CPSliPQv6CaAdN6ANoCEdAr3K4//vOQnV9lChoBkdAkL2a/h2nsWgHTegDaAhHQK96kCvHLid1fZQoaAZHQJASr7HhjvxoB03oA2gIR0Cvey9GiHqNdX2UKGgGR0CM7otzS1E3aAdN6ANoCEdAr4BItnPE9HV9lChoBkdAjymycLBsRGgHTegDaAhHQK+EB6YVqN91fZQoaAZHQIgNg2OyVwBoB03oA2gIR0CviYggHNX6dX2UKGgGR0CQBbu63AmBaAdN6ANoCEdAr4nyxxDLKXV9lChoBkdAjnWbdJrckGgHTegDaAhHQK+NgGQjlgd1fZQoaAZHQI9RUnRb8m9oB03oA2gIR0CvkUTSCvovdX2UKGgGR0CQcQ7u2JBPaAdN6ANoCEdAr5g9wtJ4B3V9lChoBkdAkNqOfVZs9GgHTegDaAhHQK+Y2aef7Jp1fZQoaAZHQJC1dYwIt19oB03oA2gIR0CvnpW9cry2dX2UKGgGR0CSHqdBBzFNaAdN6ANoCEdAr6Kxe/pMYnV9lChoBkdAke4/OQhfSmgHTegDaAhHQK+oGQYk3S91fZQoaAZHQJAbgGX5WR1oB03oA2gIR0CvqHlvIfbLdX2UKGgGR0CDjuqxTsIFaAdN6ANoCEdAr6wCV6eGwnV9lChoBkdAkVUKIBRyfmgHTegDaAhHQK+vx63RXwN1ZS4="
63
+ },
64
+ "ep_success_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
67
+ },
68
+ "_n_updates": 62500,
69
+ "n_steps": 8,
70
+ "gamma": 0.99,
71
+ "gae_lambda": 0.9,
72
+ "ent_coef": 0.0,
73
+ "vf_coef": 0.4,
74
+ "max_grad_norm": 0.5,
75
+ "normalize_advantage": false,
76
+ "observation_space": {
77
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
78
+ ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
79
+ "dtype": "float32",
80
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
81
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
82
+ "_shape": [
83
+ 28
84
+ ],
85
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
86
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
87
+ "low_repr": "-inf",
88
+ "high_repr": "inf",
89
+ "_np_random": null
90
+ },
91
+ "action_space": {
92
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
93
+ ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
94
+ "dtype": "float32",
95
+ "bounded_below": "[ True True True True True True True True]",
96
+ "bounded_above": "[ True True True True True True True True]",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "low_repr": "-1.0",
103
+ "high_repr": "1.0",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
110
+ }
111
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dc4c11b0b85f15222ee84041758f6f47d8bf6bdcd27d7e5d2d71d15722f5258
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aca743455fbf7a642584512db2f4f12c7256cb396d720f5735e00624e832ed8
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85c7537010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85c75370a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85c7537130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85c75371c0>", "_build": "<function ActorCriticPolicy._build at 0x7f85c7537250>", "forward": "<function ActorCriticPolicy.forward at 0x7f85c75372e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f85c7537370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85c7537400>", "_predict": "<function ActorCriticPolicy._predict at 0x7f85c7537490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85c7537520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85c75375b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85c7537640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f85c7540d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688603826909144854, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJrB7b2Gsha+bWEFP82h1z7P+56/sMBMP5qIYL5TshG/yg2fPniTfDxPrpk+Jj9GvmmoPD89nqu/Cn5PP0bSUL5+3hc/h65tv8jZRj6EQ4q+JV55v9h6KD+5Q98+QroSPq5CMD8cUKw+vAsAPzghST/jNT6/JpFSPv2kGj9PGHG+Ids1v8lQrz5XIbs+LyH0vrCDJj9UvRg/ZF/6PSpSvr4r9fA+iAY1v6dOSD8u2xu+6RqaP+dv9zy/cjI/yRGQvvueb79hO7s/cYa8vqZ9Ub6uQjA/HFCsPrwLAD84IUk/N5yVPVyFeT6Lkxs/SOEYPqrC372pViS/6kaRvimuJ7/IxZs+6KHmvdlHzT6hbg4/T8h8P+3AEz/GO1A/QPCovfXE3z57SqQ+Nv9LPluIDkDcpiI/3zEQvwtW6D5w+VQ/rkIwPxxQrD68CwA/ceuiv35DmD7Eej0+EQgaPx/0VL9/G7G+X7rLvoiB5z44406/mRseP+n+wr5AXaw/+BOCv9APib8kJA++l0ghvr+1jj5mAgc/DYzgPtbhFj8acrg+fJm2vnw0jj8KrbE7KOtGPq5CMD9nKj7AvAsAP3Hror+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB6FQ42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANU+vPQAAAADvD96/AAAAAKQ23z0AAAAARKn3PwAAAAAtVHu9AAAAAOIA5D8AAAAA92MEvgAAAABlauC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmAf7NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLLb0TwAAAAAIuf8vwAAAABSmfY9AAAAAIpT3j8AAAAAXF4EPgAAAACT+/s/AAAAABJQCz4AAAAARS3avwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEz6WDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBxjMe9AAAAAKQc9b8AAAAAYm/OPAAAAABWkvk/AAAAAKTAobwAAAAAQOzmPwAAAABsKQW9AAAAAPeN6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACywvq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFQ7dvAAAAAAwVPW/AAAAABxtZz0AAAAACQ7tPwAAAADMINm9AAAAADDV/T8AAAAAYsNaPQAAAAD0ffC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIt9fOUt7KKMAWyUTegDjAF0lEdArj1XuE25x3V9lChoBkdAiOUj3ueBhGgHTegDaAhHQK4+RK8tf5V1fZQoaAZHQJD0IaWHDaZoB03oA2gIR0CuRp47zTWodX2UKGgGR0CQY3iO/+KkaAdN6ANoCEdArkb9pZfUnXV9lChoBkdAkSeifthNNGgHTegDaAhHQK5KfxZMcp91fZQoaAZHQJGC7961LJ1oB03oA2gIR0CuS2UrTYukdX2UKGgGR0CR9Kp6hQFcaAdN6ANoCEdArlYEejmCAnV9lChoBkdAj3RteD3/P2gHTegDaAhHQK5Wo8HObAl1fZQoaAZHQJG2Bvn8sMBoB03oA2gIR0CuXCEG7jDLdX2UKGgGR0CMY1J4jbBXaAdN6ANoCEdArl0Tq0MPSXV9lChoBkdAkFLVvVEux2gHTegDaAhHQK5lRyCnP3V1fZQoaAZHQJKo9QuVX3hoB03oA2gIR0CuZanTqjagdX2UKGgGR0CR3TqMm4RVaAdN6ANoCEdArmkqScLBsXV9lChoBkdAkxNPn0TURWgHTegDaAhHQK5qEwX668R1fZQoaAZHQJK0ME3bVSZoB03oA2gIR0Cuc4fZM+NcdX2UKGgGR0CSCAohpxm1aAdN6ANoCEdArnQatPpIMHV9lChoBkdAkHzEADJU52gHTegDaAhHQK55zroGIKt1fZQoaAZHQJIEYTj/+85oB03oA2gIR0Cuez6PbO/tdX2UKGgGR0COxg/KyOaOaAdN6ANoCEdAroOhLqUu+XV9lChoBkdAkfdF89fTkWgHTegDaAhHQK6D/U+cH4Z1fZQoaAZHQJFwB9srNGFoB03oA2gIR0Cuh2PCdjG2dX2UKGgGR0CSA1Z6D5CXaAdN6ANoCEdArog7AJswc3V9lChoBkdAkfUo+OfdymgHTegDaAhHQK6Q5oW56MR1fZQoaAZHQJDi8HWz4UNoB03oA2gIR0CukYibc45tdX2UKGgGR0CPOi3ZPEbYaAdN6ANoCEdArpc05uIhyXV9lChoBkdAkD+P/NqxkmgHTegDaAhHQK6YpIXj2jB1fZQoaAZHQJAWI3Ns3yZoB03oA2gIR0Cuoi4gzP8idX2UKGgGR0CRAo8aGYa6aAdN6ANoCEdArqKQdp7CznV9lChoBkdAkN3/dM0xd2gHTegDaAhHQK6mEv7m+0x1fZQoaAZHQI9AfVNHpbFoB03oA2gIR0CupvQgLZzxdX2UKGgGR0CQ37e+23KCaAdN6ANoCEdArq9NZq20A3V9lChoBkdAjj7hUBGQS2gHTegDaAhHQK6vsGbkOqh1fZQoaAZHQIwjNYjjaPFoB03oA2gIR0CutOoSL61tdX2UKGgGR0CL955hScbzaAdN6ANoCEdArrZVRm9QGnV9lChoBkdAjXPYkNWluWgHTegDaAhHQK7AyKG+K0l1fZQoaAZHQIu8NlPJq7BoB03oA2gIR0CuwSwXAM2FdX2UKGgGR0CPKmOWjXWfaAdN6ANoCEdArsSqaRZED3V9lChoBkdAi68LEDQqqmgHTegDaAhHQK7FlqRlpXZ1fZQoaAZHQI1rYTwlSjxoB03oA2gIR0CuzeDL0SRKdX2UKGgGR0CMtujIq9XcaAdN6ANoCEdArs5Ia72+PHV9lChoBkdAjonDR2KVIWgHTegDaAhHQK7S6Ao5PuZ1fZQoaAZHQI0/4e7tiQVoB03oA2gIR0Cu1DdeY2KmdX2UKGgGR0BHJaoVEd/8aAdLVWgIR0Cu1fL8zhxYdX2UKGgGR0CFo+/cFhXsaAdN6ANoCEdArt8rcEeQuHV9lChoBkdAjK0NpEhJRWgHTegDaAhHQK7fjwEQoTh1fZQoaAZHQI70/CZWq95oB03oA2gIR0Cu4zM67ulXdX2UKGgGR0CMAqaDwpfAaAdN6ANoCEdAruVB8OTaCnV9lChoBkdAj8JUaAFxGWgHTegDaAhHQK7toTzundh1fZQoaAZHQIxN6WzF+/hoB03oA2gIR0Cu7jB7u2JBdX2UKGgGR0CQcpeg+QlsaAdN6ANoCEdArvUy/O+qR3V9lChoBkdAjm8hsImgJ2gHTegDaAhHQK74oJXQtz11fZQoaAZHQI35Unuy/sVoB03oA2gIR0CvAmhEroW6dX2UKGgGR0CP0C495hScaAdN6ANoCEdArwLGQp4KQnV9lChoBkdAkNt2Nm16V2gHTegDaAhHQK8GXKp1ifB1fZQoaAZHQImafoq0+khoB03oA2gIR0CvCFjJMg2ZdX2UKGgGR0CQ0FR8MNMHaAdN6ANoCEdArw+H2K2rn3V9lChoBkdAkG46+ajN6mgHTegDaAhHQK8P5A2Q4jt1fZQoaAZHQI35v752yLRoB03oA2gIR0CvE2peE7GOdX2UKGgGR0CQRxkleF+NaAdN6ANoCEdArxZGvjfelHV9lChoBkdAkrQBiobXH2gHTegDaAhHQK8g1oxHoX91fZQoaAZHQIvfN9MK1G9oB03oA2gIR0CvITiyIHkcdX2UKGgGR0CJfM6WgOBlaAdN6ANoCEdAryTUL4N7SnV9lChoBkdAhM946GQCCGgHTegDaAhHQK8m11PFefJ1fZQoaAZHQJC/M1/DtPZoB03oA2gIR0CvLg0nPVurdX2UKGgGR0CKuvlNlAeJaAdN6ANoCEdAry50Zm7J4nV9lChoBkdAjBXowEhaDGgHTegDaAhHQK8x/Zq20At1fZQoaAZHQJAv4bHZK4BoB03oA2gIR0CvNEo/zJ6qdX2UKGgGR0CQZhV7x/d7aAdN6ANoCEdArz+p/XoTwnV9lChoBkdAjeCLz5GjK2gHTegDaAhHQK9AC3kxREZ1fZQoaAZHQI+Ftmvnr6doB03oA2gIR0CvQ4sxoIv8dX2UKGgGR0COdpGUfPonaAdN6ANoCEdAr0WW+yquKXV9lChoBkdAjfe5a/yoXWgHTegDaAhHQK9NDWEsasJ1fZQoaAZHQI1hPQhOgxtoB03oA2gIR0CvTW1xbSqmdX2UKGgGR0CPSZGQ0XP7aAdN6ANoCEdAr1DpzYEns3V9lChoBkdAkEXA7kn1F2gHTegDaAhHQK9S5X/5tWN1fZQoaAZHQEx8hvitJWhoB0uEaAhHQK9VEE1VHWl1fZQoaAZHQJAWnOObRWtoB03oA2gIR0CvXYhy0a60dX2UKGgGR0COnJsHB1s+aAdN6ANoCEdAr14lzuF6A3V9lChoBkdAj95v+wTufGgHTegDaAhHQK9iOZ1mrbR1fZQoaAZHQI9Frt3OfNBoB03oA2gIR0CvZd0Xxe9jdX2UKGgGR0CJ8owPAfuDaAdN6ANoCEdAr2tC68QI2XV9lChoBkdAjVwSElE7XGgHTegDaAhHQK9roafjCHh1fZQoaAZHQIvxt3Sro4doB03oA2gIR0CvbxL92ovSdX2UKGgGR0CPSliPQv6CaAdN6ANoCEdAr3K4//vOQnV9lChoBkdAkL2a/h2nsWgHTegDaAhHQK96kCvHLid1fZQoaAZHQJASr7HhjvxoB03oA2gIR0Cvey9GiHqNdX2UKGgGR0CM7otzS1E3aAdN6ANoCEdAr4BItnPE9HV9lChoBkdAjymycLBsRGgHTegDaAhHQK+EB6YVqN91fZQoaAZHQIgNg2OyVwBoB03oA2gIR0CviYggHNX6dX2UKGgGR0CQBbu63AmBaAdN6ANoCEdAr4nyxxDLKXV9lChoBkdAjnWbdJrckGgHTegDaAhHQK+NgGQjlgd1fZQoaAZHQI9RUnRb8m9oB03oA2gIR0CvkUTSCvovdX2UKGgGR0CQcQ7u2JBPaAdN6ANoCEdAr5g9wtJ4B3V9lChoBkdAkNqOfVZs9GgHTegDaAhHQK+Y2aef7Jp1fZQoaAZHQJC1dYwIt19oB03oA2gIR0CvnpW9cry2dX2UKGgGR0CSHqdBBzFNaAdN6ANoCEdAr6Kxe/pMYnV9lChoBkdAke4/OQhfSmgHTegDaAhHQK+oGQYk3S91fZQoaAZHQJAbgGX5WR1oB03oA2gIR0CvqHlvIfbLdX2UKGgGR0CDjuqxTsIFaAdN6ANoCEdAr6wCV6eGwnV9lChoBkdAkVUKIBRyfmgHTegDaAhHQK+vx63RXwN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1201.727940660785, "std_reward": 71.71242915750862, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-06T02:12:40.900325"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26b365e82a1272b2c7480790f3a6fde6dfd2725f6437e1488c58cf0c0d5c8b6c
3
+ size 2335