saim1212 commited on
Commit
c3e22bc
·
verified ·
1 Parent(s): f0456cd

second model upload

Browse files
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: peft
3
  license: other
4
- base_model: saim1212/penguin2
5
  tags:
6
  - llama-factory
7
  - lora
@@ -16,7 +16,7 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # qwen2vl_lora_16lr_7b
18
 
19
- This model is a fine-tuned version of [saim1212/penguin2](https://huggingface.co/saim1212/penguin2) on the talk2car dataset.
20
 
21
  ## Model description
22
 
@@ -47,7 +47,7 @@ The following hyperparameters were used during training:
47
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
  - lr_scheduler_type: cosine
49
  - lr_scheduler_warmup_ratio: 0.1
50
- - num_epochs: 15.0
51
  - mixed_precision_training: Native AMP
52
 
53
  ### Training results
 
1
  ---
2
  library_name: peft
3
  license: other
4
+ base_model: saim1212/penguin2-checkpoint1
5
  tags:
6
  - llama-factory
7
  - lora
 
16
 
17
  # qwen2vl_lora_16lr_7b
18
 
19
+ This model is a fine-tuned version of [saim1212/penguin2-checkpoint1](https://huggingface.co/saim1212/penguin2-checkpoint1) on the talk2car dataset.
20
 
21
  ## Model description
22
 
 
47
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
  - lr_scheduler_type: cosine
49
  - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 10.0
51
  - mixed_precision_training: Native AMP
52
 
53
  ### Training results
adapter_config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
- "base_model_name_or_path": "saim1212/penguin2",
5
  "bias": "none",
6
  "fan_in_fan_out": false,
7
  "inference_mode": true,
@@ -20,314 +20,314 @@
20
  "rank_pattern": {},
21
  "revision": null,
22
  "target_modules": [
23
- "model.layers.6.self_attn.v_proj",
24
- "model.layers.3.self_attn.k_proj",
25
- "model.layers.5.self_attn.k_proj",
26
- "model.layers.20.self_attn.o_proj",
27
- "model.layers.2.self_attn.k_proj",
28
- "model.layers.7.self_attn_text.k_proj",
29
- "model.layers.6.self_attn.k_proj",
30
- "model.layers.20.self_attn.q_proj",
31
- "model.layers.25.self_attn.q_proj",
32
- "model.layers.1.self_attn.o_proj",
33
  "model.layers.22.self_attn.k_proj",
34
- "model.layers.8.self_attn.k_proj",
35
- "model.layers.18.self_attn_text.k_proj",
36
- "model.layers.10.self_attn_text.o_proj",
37
- "model.layers.17.mlp.gate_proj",
38
- "model.layers.2.self_attn.o_proj",
39
- "model.layers.3.self_attn_text.k_proj",
40
- "model.layers.0.self_attn_text.v_proj",
41
  "model.layers.16.self_attn.q_proj",
42
- "model.layers.4.self_attn.q_proj",
43
- "model.layers.23.self_attn_text.o_proj",
44
- "model.layers.12.self_attn.k_proj",
45
- "model.layers.17.self_attn_text.v_proj",
46
- "model.layers.25.self_attn.k_proj",
47
- "model.layers.0.self_attn.k_proj",
48
- "model.layers.23.self_attn.v_proj",
49
- "model.layers.20.self_attn.k_proj",
50
- "model.layers.13.self_attn_text.v_proj",
51
  "model.layers.9.self_attn.o_proj",
52
- "model.layers.21.self_attn.v_proj",
53
- "model.layers.11.self_attn.o_proj",
54
- "model.layers.22.self_attn.q_proj",
55
- "model.layers.19.mlp.gate_proj",
56
- "model.layers.4.mlp.gate_proj",
57
- "model.layers.18.self_attn.k_proj",
58
- "model.layers.23.self_attn_text.q_proj",
59
- "model.layers.23.self_attn.k_proj",
60
- "model.layers.24.self_attn.k_proj",
61
  "model.layers.13.self_attn_text.q_proj",
62
- "model.layers.2.self_attn.q_proj",
63
- "model.layers.3.self_attn_text.q_proj",
64
- "model.layers.0.self_attn_text.k_proj",
65
- "model.layers.22.mlp.gate_proj",
66
- "model.layers.5.mlp.down_proj",
67
- "model.layers.11.self_attn_text.q_proj",
68
- "model.layers.2.self_attn_text.k_proj",
69
- "model.layers.14.self_attn_text.q_proj",
70
- "model.layers.9.mlp.up_proj",
71
- "model.layers.19.self_attn_text.o_proj",
72
- "model.layers.2.self_attn_text.o_proj",
73
- "model.layers.3.self_attn_text.v_proj",
74
- "model.layers.27.self_attn.k_proj",
75
- "model.layers.27.self_attn_text.v_proj",
76
- "model.layers.7.self_attn_text.q_proj",
77
- "model.layers.1.mlp.up_proj",
78
- "model.layers.11.self_attn.q_proj",
79
- "model.layers.8.self_attn_text.v_proj",
80
- "model.layers.19.self_attn.k_proj",
81
- "model.layers.24.self_attn.q_proj",
82
- "model.layers.12.self_attn_text.q_proj",
83
- "model.layers.27.mlp.down_proj",
84
- "model.layers.12.self_attn_text.k_proj",
85
- "model.layers.11.self_attn.v_proj",
86
- "model.layers.13.mlp.up_proj",
87
- "model.layers.8.self_attn_text.q_proj",
88
- "model.layers.22.self_attn.v_proj",
89
- "model.layers.14.self_attn.o_proj",
90
- "model.layers.23.self_attn.q_proj",
91
- "model.layers.23.self_attn.o_proj",
92
- "model.layers.14.mlp.down_proj",
93
- "model.layers.16.mlp.down_proj",
94
- "model.layers.10.self_attn.q_proj",
95
- "model.layers.27.mlp.up_proj",
96
- "model.layers.17.mlp.up_proj",
97
- "model.layers.16.self_attn_text.v_proj",
98
- "model.layers.4.mlp.down_proj",
99
- "model.layers.22.mlp.down_proj",
100
- "model.layers.0.self_attn.q_proj",
101
- "model.layers.27.mlp.gate_proj",
102
- "model.layers.9.mlp.gate_proj",
103
- "model.layers.22.mlp.up_proj",
104
- "model.layers.2.self_attn.v_proj",
105
- "model.layers.14.self_attn.q_proj",
106
- "model.layers.7.mlp.gate_proj",
107
- "model.layers.21.self_attn.k_proj",
108
- "model.layers.13.self_attn.q_proj",
109
- "model.layers.11.mlp.down_proj",
110
- "model.layers.6.self_attn_text.k_proj",
111
- "model.layers.16.self_attn_text.o_proj",
112
- "model.layers.4.self_attn_text.k_proj",
113
- "model.layers.24.self_attn_text.v_proj",
114
- "model.layers.16.mlp.up_proj",
115
- "model.layers.13.self_attn.k_proj",
116
- "model.layers.5.self_attn_text.v_proj",
117
- "model.layers.22.self_attn_text.k_proj",
118
- "model.layers.15.self_attn_text.q_proj",
119
- "model.layers.8.self_attn.q_proj",
120
- "model.layers.25.self_attn_text.v_proj",
121
- "model.layers.8.self_attn.o_proj",
122
- "model.layers.27.self_attn_text.k_proj",
123
- "model.layers.21.mlp.up_proj",
124
- "model.layers.9.self_attn.v_proj",
125
- "model.layers.5.mlp.up_proj",
126
- "model.layers.11.self_attn_text.k_proj",
127
- "model.layers.18.mlp.up_proj",
128
- "model.layers.17.self_attn.q_proj",
129
- "model.layers.25.mlp.down_proj",
130
- "model.layers.16.self_attn.o_proj",
131
- "model.layers.15.self_attn.o_proj",
132
- "model.layers.1.mlp.down_proj",
133
- "model.layers.24.mlp.gate_proj",
134
- "model.layers.10.self_attn_text.q_proj",
135
- "model.layers.7.self_attn.k_proj",
136
- "model.layers.7.mlp.down_proj",
137
- "model.layers.17.self_attn_text.k_proj",
138
- "model.layers.6.mlp.down_proj",
139
- "model.layers.10.self_attn.k_proj",
140
- "model.layers.17.self_attn.o_proj",
141
- "model.layers.20.self_attn_text.q_proj",
142
- "model.layers.26.self_attn_text.o_proj",
143
- "model.layers.10.self_attn.v_proj",
144
- "model.layers.20.self_attn_text.k_proj",
145
- "model.layers.19.self_attn.o_proj",
146
- "model.layers.8.mlp.down_proj",
147
- "model.layers.0.mlp.down_proj",
148
- "model.layers.13.self_attn_text.o_proj",
149
- "model.layers.18.self_attn.q_proj",
150
  "model.layers.13.mlp.gate_proj",
151
- "model.layers.11.self_attn_text.o_proj",
152
- "model.layers.12.mlp.gate_proj",
153
- "model.layers.21.mlp.gate_proj",
 
 
 
 
 
154
  "model.layers.3.mlp.up_proj",
 
 
 
 
155
  "model.layers.5.self_attn.v_proj",
156
- "model.layers.15.self_attn.v_proj",
157
- "model.layers.24.self_attn_text.k_proj",
158
- "model.layers.0.self_attn_text.q_proj",
159
- "model.layers.13.self_attn.o_proj",
160
- "model.layers.24.mlp.down_proj",
161
- "model.layers.26.mlp.down_proj",
162
- "model.layers.19.mlp.up_proj",
163
- "model.layers.17.self_attn.v_proj",
164
- "model.layers.1.self_attn.q_proj",
165
- "model.layers.5.self_attn_text.q_proj",
166
- "model.layers.4.self_attn_text.q_proj",
167
  "model.layers.18.mlp.gate_proj",
 
 
 
168
  "model.layers.26.self_attn_text.v_proj",
 
 
 
 
 
169
  "model.layers.8.mlp.gate_proj",
170
- "model.layers.23.self_attn_text.v_proj",
171
- "model.layers.26.self_attn.v_proj",
172
- "model.layers.21.self_attn_text.q_proj",
173
- "model.layers.26.self_attn.k_proj",
174
- "model.layers.6.mlp.gate_proj",
175
- "model.layers.7.self_attn.o_proj",
176
- "model.layers.26.self_attn.q_proj",
177
- "model.layers.24.self_attn_text.o_proj",
178
- "model.layers.17.self_attn.k_proj",
179
- "model.layers.7.self_attn_text.o_proj",
180
- "model.layers.24.self_attn_text.q_proj",
181
- "model.layers.22.self_attn_text.q_proj",
182
- "model.layers.7.self_attn.q_proj",
183
- "model.layers.20.self_attn.v_proj",
184
- "model.layers.10.mlp.up_proj",
185
- "model.layers.19.self_attn_text.k_proj",
186
- "model.layers.14.self_attn_text.o_proj",
187
- "model.layers.22.self_attn_text.v_proj",
188
- "model.layers.17.mlp.down_proj",
189
- "model.layers.16.mlp.gate_proj",
190
- "model.layers.8.self_attn.v_proj",
191
- "model.layers.4.self_attn_text.o_proj",
192
- "model.layers.26.mlp.gate_proj",
193
- "model.layers.1.mlp.gate_proj",
194
- "model.layers.18.self_attn_text.v_proj",
195
- "model.layers.25.self_attn_text.k_proj",
196
- "model.layers.0.mlp.gate_proj",
197
- "model.layers.1.self_attn_text.k_proj",
198
- "model.layers.18.self_attn_text.o_proj",
199
- "model.layers.24.mlp.up_proj",
200
- "model.layers.26.mlp.up_proj",
201
  "model.layers.21.self_attn.q_proj",
202
- "model.layers.22.self_attn.o_proj",
203
- "model.layers.19.self_attn.q_proj",
204
- "model.layers.7.mlp.up_proj",
205
- "model.layers.16.self_attn.v_proj",
206
- "model.layers.8.mlp.up_proj",
207
- "model.layers.10.self_attn.o_proj",
208
- "model.layers.21.self_attn_text.k_proj",
209
- "model.layers.5.mlp.gate_proj",
210
- "model.layers.12.mlp.up_proj",
211
  "model.layers.25.mlp.gate_proj",
212
- "model.layers.21.self_attn.o_proj",
213
- "model.layers.15.self_attn_text.v_proj",
214
- "model.layers.15.self_attn.q_proj",
 
 
 
 
 
 
 
 
215
  "model.layers.5.self_attn_text.o_proj",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
  "model.layers.12.self_attn.v_proj",
 
 
 
 
 
217
  "model.layers.1.self_attn.k_proj",
218
- "model.layers.0.self_attn_text.o_proj",
219
- "model.layers.25.self_attn.o_proj",
220
- "model.layers.20.self_attn_text.o_proj",
221
- "model.layers.2.self_attn_text.q_proj",
222
- "model.layers.6.self_attn.q_proj",
 
223
  "model.layers.12.self_attn_text.v_proj",
224
- "model.layers.18.mlp.down_proj",
225
- "model.layers.9.self_attn.q_proj",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
  "model.layers.9.self_attn_text.v_proj",
227
- "model.layers.25.mlp.up_proj",
228
- "model.layers.16.self_attn_text.k_proj",
229
- "model.layers.12.self_attn_text.o_proj",
 
 
 
 
 
 
 
 
230
  "model.layers.18.self_attn_text.q_proj",
231
- "model.layers.13.mlp.down_proj",
232
- "model.layers.19.mlp.down_proj",
233
- "model.layers.17.self_attn_text.o_proj",
234
- "model.layers.27.self_attn.v_proj",
235
- "model.layers.12.self_attn.o_proj",
236
- "model.layers.1.self_attn_text.o_proj",
237
- "model.layers.13.self_attn.v_proj",
238
- "model.layers.23.mlp.up_proj",
239
- "model.layers.15.self_attn_text.k_proj",
240
- "model.layers.5.self_attn.o_proj",
241
- "model.layers.0.self_attn.o_proj",
242
- "model.layers.13.self_attn_text.k_proj",
243
- "model.layers.21.self_attn_text.o_proj",
244
- "model.layers.3.self_attn.v_proj",
245
- "model.layers.6.self_attn.o_proj",
246
  "model.layers.4.self_attn.k_proj",
247
- "model.layers.1.self_attn.v_proj",
248
- "model.layers.4.self_attn_text.v_proj",
249
- "model.layers.5.self_attn_text.k_proj",
250
- "model.layers.14.self_attn_text.v_proj",
 
251
  "model.layers.19.self_attn.v_proj",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
  "model.layers.12.mlp.down_proj",
253
- "model.layers.14.mlp.up_proj",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254
  "model.layers.10.self_attn_text.v_proj",
255
- "model.layers.2.mlp.down_proj",
256
- "model.layers.3.mlp.down_proj",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257
  "model.layers.14.self_attn_text.k_proj",
258
- "model.layers.23.self_attn_text.k_proj",
259
- "model.layers.23.mlp.down_proj",
260
- "model.layers.25.self_attn_text.q_proj",
261
- "model.layers.7.self_attn.v_proj",
 
 
 
262
  "model.layers.10.self_attn_text.k_proj",
263
- "model.layers.23.mlp.gate_proj",
 
264
  "model.layers.8.self_attn_text.k_proj",
265
- "model.layers.19.self_attn_text.q_proj",
266
- "model.layers.15.self_attn_text.o_proj",
267
- "model.layers.3.self_attn_text.o_proj",
268
- "model.layers.12.self_attn.q_proj",
269
- "model.layers.14.self_attn.k_proj",
270
- "model.layers.18.self_attn.o_proj",
271
- "model.layers.0.mlp.up_proj",
272
- "model.layers.4.self_attn.v_proj",
273
- "model.layers.10.mlp.down_proj",
274
- "model.layers.25.self_attn.v_proj",
275
- "model.layers.21.self_attn_text.v_proj",
276
- "model.layers.15.self_attn.k_proj",
277
- "model.layers.21.mlp.down_proj",
278
- "model.layers.27.self_attn_text.q_proj",
279
- "model.layers.15.mlp.down_proj",
280
- "model.layers.24.self_attn.v_proj",
281
- "model.layers.15.mlp.up_proj",
282
- "model.layers.9.self_attn.k_proj",
283
- "model.layers.2.self_attn_text.v_proj",
284
- "model.layers.3.self_attn.q_proj",
285
- "model.layers.27.self_attn_text.o_proj",
286
- "model.layers.8.self_attn_text.o_proj",
287
- "model.layers.11.self_attn_text.v_proj",
288
- "model.layers.18.self_attn.v_proj",
289
- "model.layers.6.self_attn_text.o_proj",
290
- "model.layers.1.self_attn_text.q_proj",
291
- "model.layers.14.mlp.gate_proj",
292
- "model.layers.6.self_attn_text.v_proj",
293
- "model.layers.4.mlp.up_proj",
294
- "model.layers.9.self_attn_text.o_proj",
295
  "model.layers.20.self_attn_text.v_proj",
296
- "model.layers.9.self_attn_text.q_proj",
297
- "model.layers.14.self_attn.v_proj",
298
- "model.layers.27.self_attn.o_proj",
299
- "model.layers.10.mlp.gate_proj",
300
- "model.layers.26.self_attn.o_proj",
301
- "model.layers.25.self_attn_text.o_proj",
302
- "model.layers.9.self_attn_text.k_proj",
303
- "model.layers.5.self_attn.q_proj",
304
- "model.layers.3.mlp.gate_proj",
305
- "model.layers.15.mlp.gate_proj",
306
- "model.layers.16.self_attn.k_proj",
307
- "model.layers.2.mlp.gate_proj",
308
  "model.layers.2.mlp.up_proj",
309
- "model.layers.26.self_attn_text.q_proj",
310
- "model.layers.17.self_attn_text.q_proj",
311
- "model.layers.24.self_attn.o_proj",
312
- "model.layers.0.self_attn.v_proj",
313
- "model.layers.7.self_attn_text.v_proj",
314
- "model.layers.20.mlp.down_proj",
 
 
 
 
 
315
  "model.layers.20.mlp.gate_proj",
316
- "model.layers.9.mlp.down_proj",
317
- "model.layers.16.self_attn_text.q_proj",
318
- "model.layers.11.self_attn.k_proj",
319
- "model.layers.3.self_attn.o_proj",
320
- "model.layers.19.self_attn_text.v_proj",
321
- "model.layers.1.self_attn_text.v_proj",
322
  "model.layers.11.mlp.gate_proj",
 
 
 
 
 
 
 
 
 
 
323
  "model.layers.11.mlp.up_proj",
324
- "model.layers.22.self_attn_text.o_proj",
325
- "model.layers.26.self_attn_text.k_proj",
326
- "model.layers.6.mlp.up_proj",
327
- "model.layers.4.self_attn.o_proj",
328
- "model.layers.27.self_attn.q_proj",
329
- "model.layers.20.mlp.up_proj",
330
- "model.layers.6.self_attn_text.q_proj"
 
 
 
 
 
 
 
331
  ],
332
  "task_type": "CAUSAL_LM",
333
  "use_dora": false,
 
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
+ "base_model_name_or_path": "saim1212/penguin2-checkpoint1",
5
  "bias": "none",
6
  "fan_in_fan_out": false,
7
  "inference_mode": true,
 
20
  "rank_pattern": {},
21
  "revision": null,
22
  "target_modules": [
23
+ "model.layers.25.self_attn_text.k_proj",
24
+ "model.layers.12.mlp.up_proj",
25
+ "model.layers.5.mlp.gate_proj",
26
+ "model.layers.22.self_attn_text.v_proj",
 
 
 
 
 
 
27
  "model.layers.22.self_attn.k_proj",
28
+ "model.layers.16.self_attn.o_proj",
29
+ "model.layers.6.self_attn.q_proj",
30
+ "model.layers.19.self_attn.o_proj",
31
+ "model.layers.2.mlp.gate_proj",
 
 
 
32
  "model.layers.16.self_attn.q_proj",
33
+ "model.layers.3.self_attn.k_proj",
34
+ "model.layers.3.mlp.down_proj",
 
 
 
 
 
 
 
35
  "model.layers.9.self_attn.o_proj",
36
+ "model.layers.8.self_attn_text.o_proj",
37
+ "model.layers.20.mlp.up_proj",
 
 
 
 
 
 
 
38
  "model.layers.13.self_attn_text.q_proj",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  "model.layers.13.mlp.gate_proj",
40
+ "model.layers.21.self_attn.o_proj",
41
+ "model.layers.19.self_attn.q_proj",
42
+ "model.layers.6.self_attn_text.q_proj",
43
+ "model.layers.1.self_attn_text.v_proj",
44
+ "model.layers.11.mlp.down_proj",
45
+ "model.layers.0.self_attn.k_proj",
46
+ "model.layers.14.mlp.up_proj",
47
+ "model.layers.18.self_attn.k_proj",
48
  "model.layers.3.mlp.up_proj",
49
+ "model.layers.12.self_attn_text.k_proj",
50
+ "model.layers.26.mlp.gate_proj",
51
+ "model.layers.21.self_attn_text.q_proj",
52
+ "model.layers.10.self_attn_text.q_proj",
53
  "model.layers.5.self_attn.v_proj",
54
+ "model.layers.19.mlp.gate_proj",
55
+ "model.layers.7.self_attn_text.o_proj",
56
+ "model.layers.10.mlp.up_proj",
 
 
 
 
 
 
 
 
57
  "model.layers.18.mlp.gate_proj",
58
+ "model.layers.17.self_attn_text.v_proj",
59
+ "model.layers.27.self_attn.v_proj",
60
+ "model.layers.0.self_attn_text.o_proj",
61
  "model.layers.26.self_attn_text.v_proj",
62
+ "model.layers.16.self_attn_text.v_proj",
63
+ "model.layers.21.self_attn_text.o_proj",
64
+ "model.layers.5.self_attn.k_proj",
65
+ "model.layers.16.mlp.down_proj",
66
+ "model.layers.9.self_attn_text.o_proj",
67
  "model.layers.8.mlp.gate_proj",
68
+ "model.layers.8.self_attn.k_proj",
69
+ "model.layers.8.self_attn.o_proj",
70
+ "model.layers.10.self_attn.k_proj",
71
+ "model.layers.23.mlp.up_proj",
72
+ "model.layers.25.self_attn_text.q_proj",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  "model.layers.21.self_attn.q_proj",
74
+ "model.layers.23.mlp.gate_proj",
75
+ "model.layers.25.self_attn.v_proj",
76
+ "model.layers.1.mlp.down_proj",
77
+ "model.layers.27.self_attn_text.k_proj",
 
 
 
 
 
78
  "model.layers.25.mlp.gate_proj",
79
+ "model.layers.2.self_attn.o_proj",
80
+ "model.layers.14.self_attn.q_proj",
81
+ "model.layers.0.self_attn.o_proj",
82
+ "model.layers.24.mlp.up_proj",
83
+ "model.layers.11.self_attn.v_proj",
84
+ "model.layers.10.mlp.gate_proj",
85
+ "model.layers.2.self_attn_text.v_proj",
86
+ "model.layers.19.self_attn_text.o_proj",
87
+ "model.layers.7.self_attn_text.v_proj",
88
+ "model.layers.3.self_attn.v_proj",
89
+ "model.layers.2.self_attn.v_proj",
90
  "model.layers.5.self_attn_text.o_proj",
91
+ "model.layers.15.self_attn.q_proj",
92
+ "model.layers.23.self_attn_text.k_proj",
93
+ "model.layers.15.self_attn_text.v_proj",
94
+ "model.layers.4.self_attn.v_proj",
95
+ "model.layers.15.self_attn_text.q_proj",
96
+ "model.layers.2.self_attn.q_proj",
97
+ "model.layers.22.self_attn_text.q_proj",
98
+ "model.layers.6.mlp.gate_proj",
99
+ "model.layers.13.self_attn_text.o_proj",
100
+ "model.layers.22.mlp.down_proj",
101
+ "model.layers.25.self_attn_text.o_proj",
102
+ "model.layers.12.mlp.gate_proj",
103
+ "model.layers.2.self_attn_text.q_proj",
104
+ "model.layers.24.self_attn.v_proj",
105
+ "model.layers.27.self_attn.q_proj",
106
+ "model.layers.21.self_attn_text.k_proj",
107
+ "model.layers.27.mlp.up_proj",
108
+ "model.layers.17.self_attn.q_proj",
109
+ "model.layers.27.self_attn_text.q_proj",
110
+ "model.layers.7.self_attn.k_proj",
111
+ "model.layers.20.self_attn_text.o_proj",
112
+ "model.layers.24.self_attn.k_proj",
113
+ "model.layers.1.self_attn_text.o_proj",
114
+ "model.layers.4.self_attn_text.q_proj",
115
+ "model.layers.16.self_attn_text.o_proj",
116
+ "model.layers.27.mlp.gate_proj",
117
+ "model.layers.0.mlp.up_proj",
118
+ "model.layers.26.self_attn.v_proj",
119
  "model.layers.12.self_attn.v_proj",
120
+ "model.layers.25.self_attn.k_proj",
121
+ "model.layers.8.self_attn_text.v_proj",
122
+ "model.layers.4.self_attn_text.v_proj",
123
+ "model.layers.16.self_attn_text.q_proj",
124
+ "model.layers.10.self_attn_text.o_proj",
125
  "model.layers.1.self_attn.k_proj",
126
+ "model.layers.11.self_attn_text.k_proj",
127
+ "model.layers.25.self_attn.q_proj",
128
+ "model.layers.19.self_attn_text.k_proj",
129
+ "model.layers.20.mlp.down_proj",
130
+ "model.layers.6.self_attn_text.v_proj",
131
+ "model.layers.14.self_attn_text.v_proj",
132
  "model.layers.12.self_attn_text.v_proj",
133
+ "model.layers.26.self_attn.o_proj",
134
+ "model.layers.7.self_attn.v_proj",
135
+ "model.layers.15.mlp.gate_proj",
136
+ "model.layers.15.mlp.down_proj",
137
+ "model.layers.6.self_attn.v_proj",
138
+ "model.layers.7.mlp.up_proj",
139
+ "model.layers.23.self_attn_text.v_proj",
140
+ "model.layers.13.self_attn.q_proj",
141
+ "model.layers.18.self_attn.v_proj",
142
+ "model.layers.20.self_attn.q_proj",
143
+ "model.layers.24.self_attn.o_proj",
144
+ "model.layers.16.self_attn.k_proj",
145
+ "model.layers.8.self_attn.v_proj",
146
+ "model.layers.24.self_attn_text.q_proj",
147
+ "model.layers.17.mlp.up_proj",
148
+ "model.layers.0.mlp.gate_proj",
149
+ "model.layers.23.self_attn.o_proj",
150
+ "model.layers.7.self_attn_text.q_proj",
151
+ "model.layers.20.self_attn.o_proj",
152
+ "model.layers.26.self_attn_text.k_proj",
153
+ "model.layers.24.self_attn_text.o_proj",
154
+ "model.layers.17.self_attn_text.k_proj",
155
+ "model.layers.1.mlp.up_proj",
156
+ "model.layers.11.self_attn.q_proj",
157
+ "model.layers.12.self_attn.k_proj",
158
+ "model.layers.0.mlp.down_proj",
159
+ "model.layers.15.self_attn.o_proj",
160
+ "model.layers.14.self_attn_text.q_proj",
161
+ "model.layers.8.mlp.up_proj",
162
  "model.layers.9.self_attn_text.v_proj",
163
+ "model.layers.17.self_attn.k_proj",
164
+ "model.layers.10.self_attn.v_proj",
165
+ "model.layers.20.self_attn_text.q_proj",
166
+ "model.layers.18.self_attn.o_proj",
167
+ "model.layers.27.self_attn.o_proj",
168
+ "model.layers.22.self_attn_text.o_proj",
169
+ "model.layers.11.self_attn_text.q_proj",
170
+ "model.layers.18.self_attn_text.v_proj",
171
+ "model.layers.23.self_attn_text.q_proj",
172
+ "model.layers.16.mlp.up_proj",
173
+ "model.layers.3.self_attn_text.q_proj",
174
  "model.layers.18.self_attn_text.q_proj",
175
+ "model.layers.0.self_attn_text.k_proj",
176
+ "model.layers.2.self_attn_text.o_proj",
177
+ "model.layers.7.self_attn.o_proj",
178
+ "model.layers.4.self_attn.q_proj",
179
+ "model.layers.5.self_attn.q_proj",
180
+ "model.layers.13.mlp.up_proj",
181
+ "model.layers.22.mlp.gate_proj",
182
+ "model.layers.10.mlp.down_proj",
 
 
 
 
 
 
 
183
  "model.layers.4.self_attn.k_proj",
184
+ "model.layers.2.self_attn_text.k_proj",
185
+ "model.layers.11.self_attn_text.o_proj",
186
+ "model.layers.24.self_attn_text.k_proj",
187
+ "model.layers.6.mlp.up_proj",
188
+ "model.layers.4.self_attn.o_proj",
189
  "model.layers.19.self_attn.v_proj",
190
+ "model.layers.21.mlp.gate_proj",
191
+ "model.layers.26.self_attn_text.o_proj",
192
+ "model.layers.4.mlp.up_proj",
193
+ "model.layers.11.self_attn.k_proj",
194
+ "model.layers.17.self_attn_text.q_proj",
195
+ "model.layers.25.self_attn_text.v_proj",
196
+ "model.layers.26.self_attn.k_proj",
197
+ "model.layers.2.self_attn.k_proj",
198
+ "model.layers.1.self_attn.o_proj",
199
+ "model.layers.3.mlp.gate_proj",
200
+ "model.layers.18.mlp.down_proj",
201
+ "model.layers.9.mlp.up_proj",
202
+ "model.layers.6.self_attn.k_proj",
203
+ "model.layers.19.mlp.down_proj",
204
  "model.layers.12.mlp.down_proj",
205
+ "model.layers.6.self_attn_text.k_proj",
206
+ "model.layers.13.self_attn.k_proj",
207
+ "model.layers.25.mlp.down_proj",
208
+ "model.layers.18.mlp.up_proj",
209
+ "model.layers.17.mlp.down_proj",
210
+ "model.layers.10.self_attn.q_proj",
211
+ "model.layers.7.self_attn.q_proj",
212
+ "model.layers.7.mlp.down_proj",
213
+ "model.layers.20.self_attn.k_proj",
214
+ "model.layers.6.self_attn_text.o_proj",
215
+ "model.layers.22.self_attn_text.k_proj",
216
+ "model.layers.7.mlp.gate_proj",
217
+ "model.layers.5.mlp.up_proj",
218
+ "model.layers.11.self_attn.o_proj",
219
+ "model.layers.14.self_attn.v_proj",
220
+ "model.layers.14.self_attn_text.o_proj",
221
+ "model.layers.17.mlp.gate_proj",
222
+ "model.layers.24.self_attn_text.v_proj",
223
+ "model.layers.9.self_attn_text.k_proj",
224
+ "model.layers.20.self_attn_text.k_proj",
225
+ "model.layers.1.self_attn.v_proj",
226
+ "model.layers.9.mlp.gate_proj",
227
+ "model.layers.4.self_attn_text.k_proj",
228
  "model.layers.10.self_attn_text.v_proj",
229
+ "model.layers.23.self_attn.v_proj",
230
+ "model.layers.21.mlp.up_proj",
231
+ "model.layers.8.self_attn_text.q_proj",
232
+ "model.layers.24.self_attn.q_proj",
233
+ "model.layers.26.mlp.down_proj",
234
+ "model.layers.14.mlp.down_proj",
235
+ "model.layers.22.self_attn.q_proj",
236
+ "model.layers.15.self_attn.v_proj",
237
+ "model.layers.3.self_attn_text.k_proj",
238
+ "model.layers.18.self_attn_text.o_proj",
239
+ "model.layers.13.self_attn.o_proj",
240
+ "model.layers.1.self_attn_text.k_proj",
241
+ "model.layers.8.self_attn.q_proj",
242
+ "model.layers.8.mlp.down_proj",
243
+ "model.layers.19.self_attn.k_proj",
244
+ "model.layers.9.self_attn_text.q_proj",
245
+ "model.layers.21.self_attn.v_proj",
246
+ "model.layers.12.self_attn_text.q_proj",
247
+ "model.layers.5.self_attn_text.k_proj",
248
+ "model.layers.16.mlp.gate_proj",
249
+ "model.layers.22.self_attn.o_proj",
250
+ "model.layers.27.mlp.down_proj",
251
+ "model.layers.4.self_attn_text.o_proj",
252
+ "model.layers.12.self_attn_text.o_proj",
253
+ "model.layers.26.mlp.up_proj",
254
+ "model.layers.5.self_attn_text.q_proj",
255
+ "model.layers.18.self_attn.q_proj",
256
+ "model.layers.0.self_attn_text.v_proj",
257
+ "model.layers.19.self_attn_text.v_proj",
258
+ "model.layers.5.self_attn.o_proj",
259
+ "model.layers.21.mlp.down_proj",
260
+ "model.layers.27.self_attn_text.v_proj",
261
+ "model.layers.1.self_attn.q_proj",
262
+ "model.layers.25.self_attn.o_proj",
263
+ "model.layers.3.self_attn_text.o_proj",
264
+ "model.layers.4.mlp.down_proj",
265
+ "model.layers.6.mlp.down_proj",
266
+ "model.layers.0.self_attn_text.q_proj",
267
+ "model.layers.3.self_attn.o_proj",
268
+ "model.layers.23.self_attn_text.o_proj",
269
  "model.layers.14.self_attn_text.k_proj",
270
+ "model.layers.26.self_attn.q_proj",
271
+ "model.layers.14.self_attn.k_proj",
272
+ "model.layers.1.mlp.gate_proj",
273
+ "model.layers.15.self_attn_text.o_proj",
274
+ "model.layers.19.self_attn_text.q_proj",
275
+ "model.layers.2.mlp.down_proj",
276
+ "model.layers.20.self_attn.v_proj",
277
  "model.layers.10.self_attn_text.k_proj",
278
+ "model.layers.22.mlp.up_proj",
279
+ "model.layers.0.self_attn.q_proj",
280
  "model.layers.8.self_attn_text.k_proj",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281
  "model.layers.20.self_attn_text.v_proj",
282
+ "model.layers.25.mlp.up_proj",
283
+ "model.layers.9.self_attn.v_proj",
284
+ "model.layers.13.mlp.down_proj",
285
+ "model.layers.16.self_attn_text.k_proj",
286
+ "model.layers.10.self_attn.o_proj",
287
+ "model.layers.5.mlp.down_proj",
288
+ "model.layers.9.self_attn.q_proj",
289
+ "model.layers.27.self_attn_text.o_proj",
 
 
 
 
290
  "model.layers.2.mlp.up_proj",
291
+ "model.layers.16.self_attn.v_proj",
292
+ "model.layers.14.self_attn.o_proj",
293
+ "model.layers.12.self_attn.o_proj",
294
+ "model.layers.22.self_attn.v_proj",
295
+ "model.layers.23.self_attn.q_proj",
296
+ "model.layers.1.self_attn_text.q_proj",
297
+ "model.layers.3.self_attn_text.v_proj",
298
+ "model.layers.18.self_attn_text.k_proj",
299
+ "model.layers.23.self_attn.k_proj",
300
+ "model.layers.27.self_attn.k_proj",
301
+ "model.layers.17.self_attn.o_proj",
302
  "model.layers.20.mlp.gate_proj",
303
+ "model.layers.13.self_attn_text.v_proj",
304
+ "model.layers.15.self_attn.k_proj",
 
 
 
 
305
  "model.layers.11.mlp.gate_proj",
306
+ "model.layers.9.mlp.down_proj",
307
+ "model.layers.5.self_attn_text.v_proj",
308
+ "model.layers.11.self_attn_text.v_proj",
309
+ "model.layers.24.mlp.down_proj",
310
+ "model.layers.6.self_attn.o_proj",
311
+ "model.layers.9.self_attn.k_proj",
312
+ "model.layers.23.mlp.down_proj",
313
+ "model.layers.14.mlp.gate_proj",
314
+ "model.layers.15.self_attn_text.k_proj",
315
+ "model.layers.13.self_attn.v_proj",
316
  "model.layers.11.mlp.up_proj",
317
+ "model.layers.17.self_attn_text.o_proj",
318
+ "model.layers.7.self_attn_text.k_proj",
319
+ "model.layers.17.self_attn.v_proj",
320
+ "model.layers.15.mlp.up_proj",
321
+ "model.layers.4.mlp.gate_proj",
322
+ "model.layers.21.self_attn.k_proj",
323
+ "model.layers.24.mlp.gate_proj",
324
+ "model.layers.0.self_attn.v_proj",
325
+ "model.layers.26.self_attn_text.q_proj",
326
+ "model.layers.12.self_attn.q_proj",
327
+ "model.layers.21.self_attn_text.v_proj",
328
+ "model.layers.3.self_attn.q_proj",
329
+ "model.layers.13.self_attn_text.k_proj",
330
+ "model.layers.19.mlp.up_proj"
331
  ],
332
  "task_type": "CAUSAL_LM",
333
  "use_dora": false,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a2e986c7024b9ca65e4e32ac4d78394410d178075d7900e4970cc747eed3bc2
3
  size 91374880
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5aea25041f898230eedf018fc9da3ee20aff4ea8d58da1da68fc1d52a1f313f
3
  size 91374880
all_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 14.544,
3
- "total_flos": 1.565274744469586e+17,
4
- "train_loss": 1.4569768874875961,
5
- "train_runtime": 22995.3507,
6
- "train_samples_per_second": 0.652,
7
- "train_steps_per_second": 0.02
8
  }
 
1
  {
2
+ "epoch": 9.848,
3
+ "total_flos": 2.117785669819433e+17,
4
+ "train_loss": 1.5235166057463616,
5
+ "train_runtime": 30234.6635,
6
+ "train_samples_per_second": 0.661,
7
+ "train_steps_per_second": 0.021
8
  }
checkpoint-620/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: saim1212/penguin2-checkpoint1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-620/adapter_config.json ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "saim1212/penguin2-checkpoint1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "model.layers.25.self_attn_text.k_proj",
24
+ "model.layers.12.mlp.up_proj",
25
+ "model.layers.5.mlp.gate_proj",
26
+ "model.layers.22.self_attn_text.v_proj",
27
+ "model.layers.22.self_attn.k_proj",
28
+ "model.layers.16.self_attn.o_proj",
29
+ "model.layers.6.self_attn.q_proj",
30
+ "model.layers.19.self_attn.o_proj",
31
+ "model.layers.2.mlp.gate_proj",
32
+ "model.layers.16.self_attn.q_proj",
33
+ "model.layers.3.self_attn.k_proj",
34
+ "model.layers.3.mlp.down_proj",
35
+ "model.layers.9.self_attn.o_proj",
36
+ "model.layers.8.self_attn_text.o_proj",
37
+ "model.layers.20.mlp.up_proj",
38
+ "model.layers.13.self_attn_text.q_proj",
39
+ "model.layers.13.mlp.gate_proj",
40
+ "model.layers.21.self_attn.o_proj",
41
+ "model.layers.19.self_attn.q_proj",
42
+ "model.layers.6.self_attn_text.q_proj",
43
+ "model.layers.1.self_attn_text.v_proj",
44
+ "model.layers.11.mlp.down_proj",
45
+ "model.layers.0.self_attn.k_proj",
46
+ "model.layers.14.mlp.up_proj",
47
+ "model.layers.18.self_attn.k_proj",
48
+ "model.layers.3.mlp.up_proj",
49
+ "model.layers.12.self_attn_text.k_proj",
50
+ "model.layers.26.mlp.gate_proj",
51
+ "model.layers.21.self_attn_text.q_proj",
52
+ "model.layers.10.self_attn_text.q_proj",
53
+ "model.layers.5.self_attn.v_proj",
54
+ "model.layers.19.mlp.gate_proj",
55
+ "model.layers.7.self_attn_text.o_proj",
56
+ "model.layers.10.mlp.up_proj",
57
+ "model.layers.18.mlp.gate_proj",
58
+ "model.layers.17.self_attn_text.v_proj",
59
+ "model.layers.27.self_attn.v_proj",
60
+ "model.layers.0.self_attn_text.o_proj",
61
+ "model.layers.26.self_attn_text.v_proj",
62
+ "model.layers.16.self_attn_text.v_proj",
63
+ "model.layers.21.self_attn_text.o_proj",
64
+ "model.layers.5.self_attn.k_proj",
65
+ "model.layers.16.mlp.down_proj",
66
+ "model.layers.9.self_attn_text.o_proj",
67
+ "model.layers.8.mlp.gate_proj",
68
+ "model.layers.8.self_attn.k_proj",
69
+ "model.layers.8.self_attn.o_proj",
70
+ "model.layers.10.self_attn.k_proj",
71
+ "model.layers.23.mlp.up_proj",
72
+ "model.layers.25.self_attn_text.q_proj",
73
+ "model.layers.21.self_attn.q_proj",
74
+ "model.layers.23.mlp.gate_proj",
75
+ "model.layers.25.self_attn.v_proj",
76
+ "model.layers.1.mlp.down_proj",
77
+ "model.layers.27.self_attn_text.k_proj",
78
+ "model.layers.25.mlp.gate_proj",
79
+ "model.layers.2.self_attn.o_proj",
80
+ "model.layers.14.self_attn.q_proj",
81
+ "model.layers.0.self_attn.o_proj",
82
+ "model.layers.24.mlp.up_proj",
83
+ "model.layers.11.self_attn.v_proj",
84
+ "model.layers.10.mlp.gate_proj",
85
+ "model.layers.2.self_attn_text.v_proj",
86
+ "model.layers.19.self_attn_text.o_proj",
87
+ "model.layers.7.self_attn_text.v_proj",
88
+ "model.layers.3.self_attn.v_proj",
89
+ "model.layers.2.self_attn.v_proj",
90
+ "model.layers.5.self_attn_text.o_proj",
91
+ "model.layers.15.self_attn.q_proj",
92
+ "model.layers.23.self_attn_text.k_proj",
93
+ "model.layers.15.self_attn_text.v_proj",
94
+ "model.layers.4.self_attn.v_proj",
95
+ "model.layers.15.self_attn_text.q_proj",
96
+ "model.layers.2.self_attn.q_proj",
97
+ "model.layers.22.self_attn_text.q_proj",
98
+ "model.layers.6.mlp.gate_proj",
99
+ "model.layers.13.self_attn_text.o_proj",
100
+ "model.layers.22.mlp.down_proj",
101
+ "model.layers.25.self_attn_text.o_proj",
102
+ "model.layers.12.mlp.gate_proj",
103
+ "model.layers.2.self_attn_text.q_proj",
104
+ "model.layers.24.self_attn.v_proj",
105
+ "model.layers.27.self_attn.q_proj",
106
+ "model.layers.21.self_attn_text.k_proj",
107
+ "model.layers.27.mlp.up_proj",
108
+ "model.layers.17.self_attn.q_proj",
109
+ "model.layers.27.self_attn_text.q_proj",
110
+ "model.layers.7.self_attn.k_proj",
111
+ "model.layers.20.self_attn_text.o_proj",
112
+ "model.layers.24.self_attn.k_proj",
113
+ "model.layers.1.self_attn_text.o_proj",
114
+ "model.layers.4.self_attn_text.q_proj",
115
+ "model.layers.16.self_attn_text.o_proj",
116
+ "model.layers.27.mlp.gate_proj",
117
+ "model.layers.0.mlp.up_proj",
118
+ "model.layers.26.self_attn.v_proj",
119
+ "model.layers.12.self_attn.v_proj",
120
+ "model.layers.25.self_attn.k_proj",
121
+ "model.layers.8.self_attn_text.v_proj",
122
+ "model.layers.4.self_attn_text.v_proj",
123
+ "model.layers.16.self_attn_text.q_proj",
124
+ "model.layers.10.self_attn_text.o_proj",
125
+ "model.layers.1.self_attn.k_proj",
126
+ "model.layers.11.self_attn_text.k_proj",
127
+ "model.layers.25.self_attn.q_proj",
128
+ "model.layers.19.self_attn_text.k_proj",
129
+ "model.layers.20.mlp.down_proj",
130
+ "model.layers.6.self_attn_text.v_proj",
131
+ "model.layers.14.self_attn_text.v_proj",
132
+ "model.layers.12.self_attn_text.v_proj",
133
+ "model.layers.26.self_attn.o_proj",
134
+ "model.layers.7.self_attn.v_proj",
135
+ "model.layers.15.mlp.gate_proj",
136
+ "model.layers.15.mlp.down_proj",
137
+ "model.layers.6.self_attn.v_proj",
138
+ "model.layers.7.mlp.up_proj",
139
+ "model.layers.23.self_attn_text.v_proj",
140
+ "model.layers.13.self_attn.q_proj",
141
+ "model.layers.18.self_attn.v_proj",
142
+ "model.layers.20.self_attn.q_proj",
143
+ "model.layers.24.self_attn.o_proj",
144
+ "model.layers.16.self_attn.k_proj",
145
+ "model.layers.8.self_attn.v_proj",
146
+ "model.layers.24.self_attn_text.q_proj",
147
+ "model.layers.17.mlp.up_proj",
148
+ "model.layers.0.mlp.gate_proj",
149
+ "model.layers.23.self_attn.o_proj",
150
+ "model.layers.7.self_attn_text.q_proj",
151
+ "model.layers.20.self_attn.o_proj",
152
+ "model.layers.26.self_attn_text.k_proj",
153
+ "model.layers.24.self_attn_text.o_proj",
154
+ "model.layers.17.self_attn_text.k_proj",
155
+ "model.layers.1.mlp.up_proj",
156
+ "model.layers.11.self_attn.q_proj",
157
+ "model.layers.12.self_attn.k_proj",
158
+ "model.layers.0.mlp.down_proj",
159
+ "model.layers.15.self_attn.o_proj",
160
+ "model.layers.14.self_attn_text.q_proj",
161
+ "model.layers.8.mlp.up_proj",
162
+ "model.layers.9.self_attn_text.v_proj",
163
+ "model.layers.17.self_attn.k_proj",
164
+ "model.layers.10.self_attn.v_proj",
165
+ "model.layers.20.self_attn_text.q_proj",
166
+ "model.layers.18.self_attn.o_proj",
167
+ "model.layers.27.self_attn.o_proj",
168
+ "model.layers.22.self_attn_text.o_proj",
169
+ "model.layers.11.self_attn_text.q_proj",
170
+ "model.layers.18.self_attn_text.v_proj",
171
+ "model.layers.23.self_attn_text.q_proj",
172
+ "model.layers.16.mlp.up_proj",
173
+ "model.layers.3.self_attn_text.q_proj",
174
+ "model.layers.18.self_attn_text.q_proj",
175
+ "model.layers.0.self_attn_text.k_proj",
176
+ "model.layers.2.self_attn_text.o_proj",
177
+ "model.layers.7.self_attn.o_proj",
178
+ "model.layers.4.self_attn.q_proj",
179
+ "model.layers.5.self_attn.q_proj",
180
+ "model.layers.13.mlp.up_proj",
181
+ "model.layers.22.mlp.gate_proj",
182
+ "model.layers.10.mlp.down_proj",
183
+ "model.layers.4.self_attn.k_proj",
184
+ "model.layers.2.self_attn_text.k_proj",
185
+ "model.layers.11.self_attn_text.o_proj",
186
+ "model.layers.24.self_attn_text.k_proj",
187
+ "model.layers.6.mlp.up_proj",
188
+ "model.layers.4.self_attn.o_proj",
189
+ "model.layers.19.self_attn.v_proj",
190
+ "model.layers.21.mlp.gate_proj",
191
+ "model.layers.26.self_attn_text.o_proj",
192
+ "model.layers.4.mlp.up_proj",
193
+ "model.layers.11.self_attn.k_proj",
194
+ "model.layers.17.self_attn_text.q_proj",
195
+ "model.layers.25.self_attn_text.v_proj",
196
+ "model.layers.26.self_attn.k_proj",
197
+ "model.layers.2.self_attn.k_proj",
198
+ "model.layers.1.self_attn.o_proj",
199
+ "model.layers.3.mlp.gate_proj",
200
+ "model.layers.18.mlp.down_proj",
201
+ "model.layers.9.mlp.up_proj",
202
+ "model.layers.6.self_attn.k_proj",
203
+ "model.layers.19.mlp.down_proj",
204
+ "model.layers.12.mlp.down_proj",
205
+ "model.layers.6.self_attn_text.k_proj",
206
+ "model.layers.13.self_attn.k_proj",
207
+ "model.layers.25.mlp.down_proj",
208
+ "model.layers.18.mlp.up_proj",
209
+ "model.layers.17.mlp.down_proj",
210
+ "model.layers.10.self_attn.q_proj",
211
+ "model.layers.7.self_attn.q_proj",
212
+ "model.layers.7.mlp.down_proj",
213
+ "model.layers.20.self_attn.k_proj",
214
+ "model.layers.6.self_attn_text.o_proj",
215
+ "model.layers.22.self_attn_text.k_proj",
216
+ "model.layers.7.mlp.gate_proj",
217
+ "model.layers.5.mlp.up_proj",
218
+ "model.layers.11.self_attn.o_proj",
219
+ "model.layers.14.self_attn.v_proj",
220
+ "model.layers.14.self_attn_text.o_proj",
221
+ "model.layers.17.mlp.gate_proj",
222
+ "model.layers.24.self_attn_text.v_proj",
223
+ "model.layers.9.self_attn_text.k_proj",
224
+ "model.layers.20.self_attn_text.k_proj",
225
+ "model.layers.1.self_attn.v_proj",
226
+ "model.layers.9.mlp.gate_proj",
227
+ "model.layers.4.self_attn_text.k_proj",
228
+ "model.layers.10.self_attn_text.v_proj",
229
+ "model.layers.23.self_attn.v_proj",
230
+ "model.layers.21.mlp.up_proj",
231
+ "model.layers.8.self_attn_text.q_proj",
232
+ "model.layers.24.self_attn.q_proj",
233
+ "model.layers.26.mlp.down_proj",
234
+ "model.layers.14.mlp.down_proj",
235
+ "model.layers.22.self_attn.q_proj",
236
+ "model.layers.15.self_attn.v_proj",
237
+ "model.layers.3.self_attn_text.k_proj",
238
+ "model.layers.18.self_attn_text.o_proj",
239
+ "model.layers.13.self_attn.o_proj",
240
+ "model.layers.1.self_attn_text.k_proj",
241
+ "model.layers.8.self_attn.q_proj",
242
+ "model.layers.8.mlp.down_proj",
243
+ "model.layers.19.self_attn.k_proj",
244
+ "model.layers.9.self_attn_text.q_proj",
245
+ "model.layers.21.self_attn.v_proj",
246
+ "model.layers.12.self_attn_text.q_proj",
247
+ "model.layers.5.self_attn_text.k_proj",
248
+ "model.layers.16.mlp.gate_proj",
249
+ "model.layers.22.self_attn.o_proj",
250
+ "model.layers.27.mlp.down_proj",
251
+ "model.layers.4.self_attn_text.o_proj",
252
+ "model.layers.12.self_attn_text.o_proj",
253
+ "model.layers.26.mlp.up_proj",
254
+ "model.layers.5.self_attn_text.q_proj",
255
+ "model.layers.18.self_attn.q_proj",
256
+ "model.layers.0.self_attn_text.v_proj",
257
+ "model.layers.19.self_attn_text.v_proj",
258
+ "model.layers.5.self_attn.o_proj",
259
+ "model.layers.21.mlp.down_proj",
260
+ "model.layers.27.self_attn_text.v_proj",
261
+ "model.layers.1.self_attn.q_proj",
262
+ "model.layers.25.self_attn.o_proj",
263
+ "model.layers.3.self_attn_text.o_proj",
264
+ "model.layers.4.mlp.down_proj",
265
+ "model.layers.6.mlp.down_proj",
266
+ "model.layers.0.self_attn_text.q_proj",
267
+ "model.layers.3.self_attn.o_proj",
268
+ "model.layers.23.self_attn_text.o_proj",
269
+ "model.layers.14.self_attn_text.k_proj",
270
+ "model.layers.26.self_attn.q_proj",
271
+ "model.layers.14.self_attn.k_proj",
272
+ "model.layers.1.mlp.gate_proj",
273
+ "model.layers.15.self_attn_text.o_proj",
274
+ "model.layers.19.self_attn_text.q_proj",
275
+ "model.layers.2.mlp.down_proj",
276
+ "model.layers.20.self_attn.v_proj",
277
+ "model.layers.10.self_attn_text.k_proj",
278
+ "model.layers.22.mlp.up_proj",
279
+ "model.layers.0.self_attn.q_proj",
280
+ "model.layers.8.self_attn_text.k_proj",
281
+ "model.layers.20.self_attn_text.v_proj",
282
+ "model.layers.25.mlp.up_proj",
283
+ "model.layers.9.self_attn.v_proj",
284
+ "model.layers.13.mlp.down_proj",
285
+ "model.layers.16.self_attn_text.k_proj",
286
+ "model.layers.10.self_attn.o_proj",
287
+ "model.layers.5.mlp.down_proj",
288
+ "model.layers.9.self_attn.q_proj",
289
+ "model.layers.27.self_attn_text.o_proj",
290
+ "model.layers.2.mlp.up_proj",
291
+ "model.layers.16.self_attn.v_proj",
292
+ "model.layers.14.self_attn.o_proj",
293
+ "model.layers.12.self_attn.o_proj",
294
+ "model.layers.22.self_attn.v_proj",
295
+ "model.layers.23.self_attn.q_proj",
296
+ "model.layers.1.self_attn_text.q_proj",
297
+ "model.layers.3.self_attn_text.v_proj",
298
+ "model.layers.18.self_attn_text.k_proj",
299
+ "model.layers.23.self_attn.k_proj",
300
+ "model.layers.27.self_attn.k_proj",
301
+ "model.layers.17.self_attn.o_proj",
302
+ "model.layers.20.mlp.gate_proj",
303
+ "model.layers.13.self_attn_text.v_proj",
304
+ "model.layers.15.self_attn.k_proj",
305
+ "model.layers.11.mlp.gate_proj",
306
+ "model.layers.9.mlp.down_proj",
307
+ "model.layers.5.self_attn_text.v_proj",
308
+ "model.layers.11.self_attn_text.v_proj",
309
+ "model.layers.24.mlp.down_proj",
310
+ "model.layers.6.self_attn.o_proj",
311
+ "model.layers.9.self_attn.k_proj",
312
+ "model.layers.23.mlp.down_proj",
313
+ "model.layers.14.mlp.gate_proj",
314
+ "model.layers.15.self_attn_text.k_proj",
315
+ "model.layers.13.self_attn.v_proj",
316
+ "model.layers.11.mlp.up_proj",
317
+ "model.layers.17.self_attn_text.o_proj",
318
+ "model.layers.7.self_attn_text.k_proj",
319
+ "model.layers.17.self_attn.v_proj",
320
+ "model.layers.15.mlp.up_proj",
321
+ "model.layers.4.mlp.gate_proj",
322
+ "model.layers.21.self_attn.k_proj",
323
+ "model.layers.24.mlp.gate_proj",
324
+ "model.layers.0.self_attn.v_proj",
325
+ "model.layers.26.self_attn_text.q_proj",
326
+ "model.layers.12.self_attn.q_proj",
327
+ "model.layers.21.self_attn_text.v_proj",
328
+ "model.layers.3.self_attn.q_proj",
329
+ "model.layers.13.self_attn_text.k_proj",
330
+ "model.layers.19.mlp.up_proj"
331
+ ],
332
+ "task_type": "CAUSAL_LM",
333
+ "use_dora": false,
334
+ "use_rslora": false
335
+ }
checkpoint-620/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5aea25041f898230eedf018fc9da3ee20aff4ea8d58da1da68fc1d52a1f313f
3
+ size 91374880
checkpoint-620/added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
checkpoint-620/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-620/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-620/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83601b26aeedfa6d673c7eb4e30b1259d6f41697c58f66ab82fbd02be9331752
3
+ size 183102410
checkpoint-620/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
checkpoint-620/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b074bf97f241c2662caa5ce956b03d1249c3cc0713b6aef7796673362754f98
3
+ size 14512
checkpoint-620/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58aed9e8d78903cb12015375021c729c3f6c5fd1a1e19e7aee6ddde57c3310b9
3
+ size 14512
checkpoint-620/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74f8fea0ffcabf1857136136180f4c3a564886877d5b601d4022376094a58beb
3
+ size 988
checkpoint-620/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08317d4141be052ac5dc8d082d875b2c2419b963cc5e34daaba5b65ef0dd9f81
3
+ size 1064
checkpoint-620/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-620/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
3
+ size 11420371
checkpoint-620/tokenizer_config.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "max_length": null,
139
+ "model_max_length": 32768,
140
+ "pad_to_multiple_of": null,
141
+ "pad_token": "<|endoftext|>",
142
+ "pad_token_type_id": 0,
143
+ "padding_side": "right",
144
+ "processor_class": "Qwen2VLProcessor",
145
+ "split_special_tokens": false,
146
+ "tokenizer_class": "Qwen2Tokenizer",
147
+ "unk_token": null
148
+ }
checkpoint-620/trainer_state.json ADDED
@@ -0,0 +1,467 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.848,
5
+ "eval_steps": 500,
6
+ "global_step": 620,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.16,
13
+ "grad_norm": 53.243560791015625,
14
+ "learning_rate": 2.580645161290323e-06,
15
+ "loss": 14.2026,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.32,
20
+ "grad_norm": 18.361902236938477,
21
+ "learning_rate": 5.806451612903226e-06,
22
+ "loss": 6.1329,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.48,
27
+ "grad_norm": 19.430877685546875,
28
+ "learning_rate": 9.03225806451613e-06,
29
+ "loss": 4.058,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.64,
34
+ "grad_norm": 15.267464637756348,
35
+ "learning_rate": 1.2258064516129034e-05,
36
+ "loss": 3.097,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.8,
41
+ "grad_norm": 9.403186798095703,
42
+ "learning_rate": 1.5483870967741936e-05,
43
+ "loss": 2.8274,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.96,
48
+ "grad_norm": 6.261369228363037,
49
+ "learning_rate": 1.870967741935484e-05,
50
+ "loss": 2.4626,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 1.112,
55
+ "grad_norm": 5.149415493011475,
56
+ "learning_rate": 1.999429490929718e-05,
57
+ "loss": 2.1131,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 1.272,
62
+ "grad_norm": 4.141679286956787,
63
+ "learning_rate": 1.9959454037227215e-05,
64
+ "loss": 2.0099,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 1.432,
69
+ "grad_norm": 4.4521870613098145,
70
+ "learning_rate": 1.989305206325792e-05,
71
+ "loss": 1.8846,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 1.592,
76
+ "grad_norm": 6.675071716308594,
77
+ "learning_rate": 1.9795299412524948e-05,
78
+ "loss": 1.8903,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 1.752,
83
+ "grad_norm": 4.7035231590271,
84
+ "learning_rate": 1.9666505859174462e-05,
85
+ "loss": 1.7584,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 1.912,
90
+ "grad_norm": 6.597540855407715,
91
+ "learning_rate": 1.9507079544701583e-05,
92
+ "loss": 1.7185,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 2.064,
97
+ "grad_norm": 4.8695759773254395,
98
+ "learning_rate": 1.9317525684566686e-05,
99
+ "loss": 1.5598,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 2.224,
104
+ "grad_norm": 3.69114351272583,
105
+ "learning_rate": 1.9098444967188308e-05,
106
+ "loss": 1.6693,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 2.384,
111
+ "grad_norm": 3.190814733505249,
112
+ "learning_rate": 1.8850531650386154e-05,
113
+ "loss": 1.5646,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 2.544,
118
+ "grad_norm": 3.4081127643585205,
119
+ "learning_rate": 1.857457136130651e-05,
120
+ "loss": 1.4366,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 2.7039999999999997,
125
+ "grad_norm": 2.457369327545166,
126
+ "learning_rate": 1.827143860680199e-05,
127
+ "loss": 1.4132,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 2.864,
132
+ "grad_norm": 2.4000205993652344,
133
+ "learning_rate": 1.7942094002155122e-05,
134
+ "loss": 1.3689,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 3.016,
139
+ "grad_norm": 2.56905198097229,
140
+ "learning_rate": 1.758758122692791e-05,
141
+ "loss": 1.2682,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 3.176,
146
+ "grad_norm": 2.089385986328125,
147
+ "learning_rate": 1.7209023717584013e-05,
148
+ "loss": 1.2686,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 3.336,
153
+ "grad_norm": 2.0517237186431885,
154
+ "learning_rate": 1.6807621107364613e-05,
155
+ "loss": 1.2347,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 3.496,
160
+ "grad_norm": 2.282109260559082,
161
+ "learning_rate": 1.6384645424699835e-05,
162
+ "loss": 1.2462,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 3.656,
167
+ "grad_norm": 2.201382637023926,
168
+ "learning_rate": 1.594143706220273e-05,
169
+ "loss": 1.2536,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 3.816,
174
+ "grad_norm": 1.6903492212295532,
175
+ "learning_rate": 1.5479400529019987e-05,
176
+ "loss": 1.2723,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 3.976,
181
+ "grad_norm": 2.2920656204223633,
182
+ "learning_rate": 1.5000000000000002e-05,
183
+ "loss": 1.2036,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 4.128,
188
+ "grad_norm": 2.610243320465088,
189
+ "learning_rate": 1.4504754675782731e-05,
190
+ "loss": 1.0922,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 4.288,
195
+ "grad_norm": 2.494142770767212,
196
+ "learning_rate": 1.3995233968515105e-05,
197
+ "loss": 1.0985,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 4.448,
202
+ "grad_norm": 1.8717281818389893,
203
+ "learning_rate": 1.3473052528448203e-05,
204
+ "loss": 1.1152,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 4.608,
209
+ "grad_norm": 2.3531064987182617,
210
+ "learning_rate": 1.2939865127176771e-05,
211
+ "loss": 1.1175,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 4.768,
216
+ "grad_norm": 2.1707255840301514,
217
+ "learning_rate": 1.2397361413735785e-05,
218
+ "loss": 1.119,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 4.928,
223
+ "grad_norm": 2.2494473457336426,
224
+ "learning_rate": 1.1847260560171895e-05,
225
+ "loss": 1.1175,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 5.08,
230
+ "grad_norm": 2.7846431732177734,
231
+ "learning_rate": 1.1291305813557616e-05,
232
+ "loss": 1.0205,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 5.24,
237
+ "grad_norm": 2.8679280281066895,
238
+ "learning_rate": 1.0731258971712762e-05,
239
+ "loss": 1.0235,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 5.4,
244
+ "grad_norm": 2.4637234210968018,
245
+ "learning_rate": 1.0168894800139311e-05,
246
+ "loss": 1.0103,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 5.5600000000000005,
251
+ "grad_norm": 2.420814275741577,
252
+ "learning_rate": 9.605995407862248e-06,
253
+ "loss": 0.999,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 5.72,
258
+ "grad_norm": 2.7816896438598633,
259
+ "learning_rate": 9.04434459999902e-06,
260
+ "loss": 0.9866,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 5.88,
265
+ "grad_norm": 3.1777126789093018,
266
+ "learning_rate": 8.485722224954237e-06,
267
+ "loss": 1.0309,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 6.032,
272
+ "grad_norm": 2.992114782333374,
273
+ "learning_rate": 7.93189853415293e-06,
274
+ "loss": 0.9126,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 6.192,
279
+ "grad_norm": 2.742065906524658,
280
+ "learning_rate": 7.384628572186334e-06,
281
+ "loss": 0.9194,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 6.352,
286
+ "grad_norm": 2.3192052841186523,
287
+ "learning_rate": 6.845646615147445e-06,
288
+ "loss": 0.907,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 6.5120000000000005,
293
+ "grad_norm": 3.0966978073120117,
294
+ "learning_rate": 6.31666067478113e-06,
295
+ "loss": 0.9,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 6.672,
300
+ "grad_norm": 2.693567991256714,
301
+ "learning_rate": 5.799347085864851e-06,
302
+ "loss": 0.8984,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 6.832,
307
+ "grad_norm": 2.535724639892578,
308
+ "learning_rate": 5.295345193972445e-06,
309
+ "loss": 0.8658,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 6.992,
314
+ "grad_norm": 2.9776270389556885,
315
+ "learning_rate": 4.8062521604551245e-06,
316
+ "loss": 0.9213,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 7.144,
321
+ "grad_norm": 2.5464305877685547,
322
+ "learning_rate": 4.333617901102592e-06,
323
+ "loss": 0.7661,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 7.304,
328
+ "grad_norm": 2.318953037261963,
329
+ "learning_rate": 3.878940174523371e-06,
330
+ "loss": 0.791,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 7.464,
335
+ "grad_norm": 3.2819600105285645,
336
+ "learning_rate": 3.4436598358091577e-06,
337
+ "loss": 0.8174,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 7.624,
342
+ "grad_norm": 2.2935101985931396,
343
+ "learning_rate": 3.0291562705240107e-06,
344
+ "loss": 0.8107,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 7.784,
349
+ "grad_norm": 3.059847354888916,
350
+ "learning_rate": 2.6367430234880286e-06,
351
+ "loss": 0.8199,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 7.944,
356
+ "grad_norm": 2.7650320529937744,
357
+ "learning_rate": 2.2676636362076075e-06,
358
+ "loss": 0.819,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 8.096,
363
+ "grad_norm": 3.0527632236480713,
364
+ "learning_rate": 1.9230877061433505e-06,
365
+ "loss": 0.7425,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 8.256,
370
+ "grad_norm": 2.6537036895751953,
371
+ "learning_rate": 1.60410718030361e-06,
372
+ "loss": 0.731,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 8.416,
377
+ "grad_norm": 2.6983063220977783,
378
+ "learning_rate": 1.3117328949091634e-06,
379
+ "loss": 0.7354,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 8.576,
384
+ "grad_norm": 2.4979090690612793,
385
+ "learning_rate": 1.0468913720946084e-06,
386
+ "loss": 0.7442,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 8.736,
391
+ "grad_norm": 2.457855463027954,
392
+ "learning_rate": 8.10421883797694e-07,
393
+ "loss": 0.7333,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 8.896,
398
+ "grad_norm": 2.766944646835327,
399
+ "learning_rate": 6.030737921409169e-07,
400
+ "loss": 0.7399,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 9.048,
405
+ "grad_norm": 2.2459168434143066,
406
+ "learning_rate": 4.2550417473364524e-07,
407
+ "loss": 0.6996,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 9.208,
412
+ "grad_norm": 2.7171614170074463,
413
+ "learning_rate": 2.7827574242009434e-07,
414
+ "loss": 0.7126,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 9.368,
419
+ "grad_norm": 2.6220312118530273,
420
+ "learning_rate": 1.6185505607171027e-07,
421
+ "loss": 0.6958,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 9.528,
426
+ "grad_norm": 2.0688819885253906,
427
+ "learning_rate": 7.661104807487607e-08,
428
+ "loss": 0.7154,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 9.688,
433
+ "grad_norm": 2.2390174865722656,
434
+ "learning_rate": 2.2813853199292745e-08,
435
+ "loss": 0.7047,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 9.848,
440
+ "grad_norm": 2.2094919681549072,
441
+ "learning_rate": 6.339525519594159e-10,
442
+ "loss": 0.7091,
443
+ "step": 620
444
+ }
445
+ ],
446
+ "logging_steps": 10,
447
+ "max_steps": 620,
448
+ "num_input_tokens_seen": 0,
449
+ "num_train_epochs": 10,
450
+ "save_steps": 1000,
451
+ "stateful_callbacks": {
452
+ "TrainerControl": {
453
+ "args": {
454
+ "should_epoch_stop": false,
455
+ "should_evaluate": false,
456
+ "should_log": false,
457
+ "should_save": true,
458
+ "should_training_stop": true
459
+ },
460
+ "attributes": {}
461
+ }
462
+ },
463
+ "total_flos": 2.117785669819433e+17,
464
+ "train_batch_size": 4,
465
+ "trial_name": null,
466
+ "trial_params": null
467
+ }
checkpoint-620/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc68d428446e7b26c93265364a77e73cf5e5fd379067282b28ea225efb2cb018
3
+ size 5688
checkpoint-620/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
runs/Mar16_11-00-49_ca1aedd8ff14/events.out.tfevents.1742123117.ca1aedd8ff14.153.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1157d83dd3801b0dd34503ce6098d087c95397b7c7cdefcfa64acaa0629349c3
3
+ size 19782
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 14.544,
3
- "total_flos": 1.565274744469586e+17,
4
- "train_loss": 1.4569768874875961,
5
- "train_runtime": 22995.3507,
6
- "train_samples_per_second": 0.652,
7
- "train_steps_per_second": 0.02
8
  }
 
1
  {
2
+ "epoch": 9.848,
3
+ "total_flos": 2.117785669819433e+17,
4
+ "train_loss": 1.5235166057463616,
5
+ "train_runtime": 30234.6635,
6
+ "train_samples_per_second": 0.661,
7
+ "train_steps_per_second": 0.021
8
  }
trainer_log.jsonl CHANGED
@@ -1,47 +1,63 @@
1
- {"current_steps": 10, "total_steps": 465, "loss": 10.0348, "lr": 3.8297872340425535e-06, "epoch": 0.32, "percentage": 2.15, "elapsed_time": "0:08:22", "remaining_time": "6:21:23"}
2
- {"current_steps": 20, "total_steps": 465, "loss": 4.7312, "lr": 8.085106382978723e-06, "epoch": 0.64, "percentage": 4.3, "elapsed_time": "0:16:48", "remaining_time": "6:14:03"}
3
- {"current_steps": 30, "total_steps": 465, "loss": 3.4362, "lr": 1.2340425531914895e-05, "epoch": 0.96, "percentage": 6.45, "elapsed_time": "0:25:14", "remaining_time": "6:05:54"}
4
- {"current_steps": 40, "total_steps": 465, "loss": 2.5739, "lr": 1.6595744680851064e-05, "epoch": 1.256, "percentage": 8.6, "elapsed_time": "0:33:01", "remaining_time": "5:50:50"}
5
- {"current_steps": 50, "total_steps": 465, "loss": 2.4828, "lr": 1.9998870284726968e-05, "epoch": 1.576, "percentage": 10.75, "elapsed_time": "0:41:27", "remaining_time": "5:44:04"}
6
- {"current_steps": 60, "total_steps": 465, "loss": 2.1904, "lr": 1.9959357045100764e-05, "epoch": 1.896, "percentage": 12.9, "elapsed_time": "0:49:52", "remaining_time": "5:36:37"}
7
- {"current_steps": 70, "total_steps": 465, "loss": 1.893, "lr": 1.9863613034027224e-05, "epoch": 2.192, "percentage": 15.05, "elapsed_time": "0:57:38", "remaining_time": "5:25:18"}
8
- {"current_steps": 80, "total_steps": 465, "loss": 1.9328, "lr": 1.971217882451521e-05, "epoch": 2.512, "percentage": 17.2, "elapsed_time": "1:06:04", "remaining_time": "5:17:56"}
9
- {"current_steps": 90, "total_steps": 465, "loss": 1.8361, "lr": 1.9505909417784758e-05, "epoch": 2.832, "percentage": 19.35, "elapsed_time": "1:14:29", "remaining_time": "5:10:22"}
10
- {"current_steps": 100, "total_steps": 465, "loss": 1.6677, "lr": 1.9245969415909464e-05, "epoch": 3.128, "percentage": 21.51, "elapsed_time": "1:22:16", "remaining_time": "5:00:19"}
11
- {"current_steps": 110, "total_steps": 465, "loss": 1.7492, "lr": 1.8933826446444933e-05, "epoch": 3.448, "percentage": 23.66, "elapsed_time": "1:30:41", "remaining_time": "4:52:41"}
12
- {"current_steps": 120, "total_steps": 465, "loss": 1.6435, "lr": 1.8571242876167995e-05, "epoch": 3.768, "percentage": 25.81, "elapsed_time": "1:39:07", "remaining_time": "4:44:58"}
13
- {"current_steps": 130, "total_steps": 465, "loss": 1.478, "lr": 1.8160265860711134e-05, "epoch": 4.064, "percentage": 27.96, "elapsed_time": "1:46:54", "remaining_time": "4:35:28"}
14
- {"current_steps": 140, "total_steps": 465, "loss": 1.4807, "lr": 1.770321578627213e-05, "epoch": 4.384, "percentage": 30.11, "elapsed_time": "1:55:19", "remaining_time": "4:27:42"}
15
- {"current_steps": 150, "total_steps": 465, "loss": 1.375, "lr": 1.7202673168657318e-05, "epoch": 4.704, "percentage": 32.26, "elapsed_time": "2:03:44", "remaining_time": "4:19:50"}
16
- {"current_steps": 160, "total_steps": 465, "loss": 1.2751, "lr": 1.6661464083626734e-05, "epoch": 5.0, "percentage": 34.41, "elapsed_time": "2:11:32", "remaining_time": "4:10:45"}
17
- {"current_steps": 170, "total_steps": 465, "loss": 1.2887, "lr": 1.6082644210801846e-05, "epoch": 5.32, "percentage": 36.56, "elapsed_time": "2:19:58", "remaining_time": "4:02:54"}
18
- {"current_steps": 180, "total_steps": 465, "loss": 1.2852, "lr": 1.5469481581224274e-05, "epoch": 5.64, "percentage": 38.71, "elapsed_time": "2:28:24", "remaining_time": "3:54:58"}
19
- {"current_steps": 190, "total_steps": 465, "loss": 1.2329, "lr": 1.4825438125973263e-05, "epoch": 5.96, "percentage": 40.86, "elapsed_time": "2:36:50", "remaining_time": "3:47:00"}
20
- {"current_steps": 200, "total_steps": 465, "loss": 1.1001, "lr": 1.4154150130018867e-05, "epoch": 6.256, "percentage": 43.01, "elapsed_time": "2:44:37", "remaining_time": "3:38:08"}
21
- {"current_steps": 210, "total_steps": 465, "loss": 1.1543, "lr": 1.3459407701668762e-05, "epoch": 6.576, "percentage": 45.16, "elapsed_time": "2:53:01", "remaining_time": "3:30:06"}
22
- {"current_steps": 220, "total_steps": 465, "loss": 1.132, "lr": 1.2745133373524855e-05, "epoch": 6.896, "percentage": 47.31, "elapsed_time": "3:01:28", "remaining_time": "3:22:05"}
23
- {"current_steps": 230, "total_steps": 465, "loss": 1.0284, "lr": 1.2015359955769021e-05, "epoch": 7.192, "percentage": 49.46, "elapsed_time": "3:09:16", "remaining_time": "3:13:23"}
24
- {"current_steps": 240, "total_steps": 465, "loss": 1.0392, "lr": 1.127420776681905e-05, "epoch": 7.5120000000000005, "percentage": 51.61, "elapsed_time": "3:17:42", "remaining_time": "3:05:21"}
25
- {"current_steps": 250, "total_steps": 465, "loss": 1.0436, "lr": 1.0525861369910877e-05, "epoch": 7.832, "percentage": 53.76, "elapsed_time": "3:26:09", "remaining_time": "2:57:17"}
26
- {"current_steps": 260, "total_steps": 465, "loss": 0.8973, "lr": 9.77454594695308e-06, "epoch": 8.128, "percentage": 55.91, "elapsed_time": "3:33:57", "remaining_time": "2:48:41"}
27
- {"current_steps": 270, "total_steps": 465, "loss": 0.9455, "lr": 9.024503443047318e-06, "epoch": 8.448, "percentage": 58.06, "elapsed_time": "3:42:23", "remaining_time": "2:40:37"}
28
- {"current_steps": 280, "total_steps": 465, "loss": 0.9297, "lr": 8.279968616363417e-06, "epoch": 8.768, "percentage": 60.22, "elapsed_time": "3:50:50", "remaining_time": "2:32:31"}
29
- {"current_steps": 290, "total_steps": 465, "loss": 0.8414, "lr": 7.545145128592009e-06, "epoch": 9.064, "percentage": 62.37, "elapsed_time": "3:58:39", "remaining_time": "2:24:00"}
30
- {"current_steps": 300, "total_steps": 465, "loss": 0.8513, "lr": 6.824181810968675e-06, "epoch": 9.384, "percentage": 64.52, "elapsed_time": "4:07:04", "remaining_time": "2:15:53"}
31
- {"current_steps": 310, "total_steps": 465, "loss": 0.8351, "lr": 6.121149239872151e-06, "epoch": 9.704, "percentage": 66.67, "elapsed_time": "4:15:31", "remaining_time": "2:07:45"}
32
- {"current_steps": 320, "total_steps": 465, "loss": 0.7886, "lr": 5.440016754251364e-06, "epoch": 10.0, "percentage": 68.82, "elapsed_time": "4:23:20", "remaining_time": "1:59:19"}
33
- {"current_steps": 330, "total_steps": 465, "loss": 0.7832, "lr": 4.784630044641435e-06, "epoch": 10.32, "percentage": 70.97, "elapsed_time": "4:31:47", "remaining_time": "1:51:11"}
34
- {"current_steps": 340, "total_steps": 465, "loss": 0.7555, "lr": 4.1586894403016576e-06, "epoch": 10.64, "percentage": 73.12, "elapsed_time": "4:40:13", "remaining_time": "1:43:01"}
35
- {"current_steps": 350, "total_steps": 465, "loss": 0.7529, "lr": 3.565729017066729e-06, "epoch": 10.96, "percentage": 75.27, "elapsed_time": "4:48:39", "remaining_time": "1:34:50"}
36
- {"current_steps": 360, "total_steps": 465, "loss": 0.6507, "lr": 3.0090966438688774e-06, "epoch": 11.256, "percentage": 77.42, "elapsed_time": "4:56:29", "remaining_time": "1:26:28"}
37
- {"current_steps": 370, "total_steps": 465, "loss": 0.7048, "lr": 2.491935080588658e-06, "epoch": 11.576, "percentage": 79.57, "elapsed_time": "5:04:56", "remaining_time": "1:18:17"}
38
- {"current_steps": 380, "total_steps": 465, "loss": 0.6911, "lr": 2.01716423395644e-06, "epoch": 11.896, "percentage": 81.72, "elapsed_time": "5:13:22", "remaining_time": "1:10:05"}
39
- {"current_steps": 390, "total_steps": 465, "loss": 0.6039, "lr": 1.587464671688187e-06, "epoch": 12.192, "percentage": 83.87, "elapsed_time": "5:21:10", "remaining_time": "1:01:45"}
40
- {"current_steps": 400, "total_steps": 465, "loss": 0.6456, "lr": 1.2052624879351105e-06, "epoch": 12.512, "percentage": 86.02, "elapsed_time": "5:29:36", "remaining_time": "0:53:33"}
41
- {"current_steps": 410, "total_steps": 465, "loss": 0.6479, "lr": 8.727156054972374e-07, "epoch": 12.832, "percentage": 88.17, "elapsed_time": "5:38:02", "remaining_time": "0:45:20"}
42
- {"current_steps": 420, "total_steps": 465, "loss": 0.6013, "lr": 5.917015921389569e-07, "epoch": 13.128, "percentage": 90.32, "elapsed_time": "5:45:51", "remaining_time": "0:37:03"}
43
- {"current_steps": 430, "total_steps": 465, "loss": 0.6168, "lr": 3.638070597958665e-07, "epoch": 13.448, "percentage": 92.47, "elapsed_time": "5:54:19", "remaining_time": "0:28:50"}
44
- {"current_steps": 440, "total_steps": 465, "loss": 0.6093, "lr": 1.903187065253076e-07, "epoch": 13.768, "percentage": 94.62, "elapsed_time": "6:02:46", "remaining_time": "0:20:36"}
45
- {"current_steps": 450, "total_steps": 465, "loss": 0.5911, "lr": 7.22160517779169e-08, "epoch": 14.064, "percentage": 96.77, "elapsed_time": "6:10:33", "remaining_time": "0:12:21"}
46
- {"current_steps": 460, "total_steps": 465, "loss": 0.6135, "lr": 1.0165906007056914e-08, "epoch": 14.384, "percentage": 98.92, "elapsed_time": "6:18:59", "remaining_time": "0:04:07"}
47
- {"current_steps": 465, "total_steps": 465, "epoch": 14.544, "percentage": 100.0, "elapsed_time": "6:23:14", "remaining_time": "0:00:00"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 10, "total_steps": 620, "loss": 14.2026, "lr": 2.580645161290323e-06, "epoch": 0.16, "percentage": 1.61, "elapsed_time": "0:08:09", "remaining_time": "8:18:05"}
2
+ {"current_steps": 20, "total_steps": 620, "loss": 6.1329, "lr": 5.806451612903226e-06, "epoch": 0.32, "percentage": 3.23, "elapsed_time": "0:16:20", "remaining_time": "8:10:05"}
3
+ {"current_steps": 30, "total_steps": 620, "loss": 4.058, "lr": 9.03225806451613e-06, "epoch": 0.48, "percentage": 4.84, "elapsed_time": "0:24:30", "remaining_time": "8:02:04"}
4
+ {"current_steps": 40, "total_steps": 620, "loss": 3.097, "lr": 1.2258064516129034e-05, "epoch": 0.64, "percentage": 6.45, "elapsed_time": "0:32:41", "remaining_time": "7:54:02"}
5
+ {"current_steps": 50, "total_steps": 620, "loss": 2.8274, "lr": 1.5483870967741936e-05, "epoch": 0.8, "percentage": 8.06, "elapsed_time": "0:40:51", "remaining_time": "7:45:49"}
6
+ {"current_steps": 60, "total_steps": 620, "loss": 2.4626, "lr": 1.870967741935484e-05, "epoch": 0.96, "percentage": 9.68, "elapsed_time": "0:49:02", "remaining_time": "7:37:42"}
7
+ {"current_steps": 70, "total_steps": 620, "loss": 2.1131, "lr": 1.999429490929718e-05, "epoch": 1.112, "percentage": 11.29, "elapsed_time": "0:56:48", "remaining_time": "7:26:22"}
8
+ {"current_steps": 80, "total_steps": 620, "loss": 2.0099, "lr": 1.9959454037227215e-05, "epoch": 1.272, "percentage": 12.9, "elapsed_time": "1:04:59", "remaining_time": "7:18:38"}
9
+ {"current_steps": 90, "total_steps": 620, "loss": 1.8846, "lr": 1.989305206325792e-05, "epoch": 1.432, "percentage": 14.52, "elapsed_time": "1:13:08", "remaining_time": "7:10:44"}
10
+ {"current_steps": 100, "total_steps": 620, "loss": 1.8903, "lr": 1.9795299412524948e-05, "epoch": 1.592, "percentage": 16.13, "elapsed_time": "1:21:19", "remaining_time": "7:02:52"}
11
+ {"current_steps": 110, "total_steps": 620, "loss": 1.7584, "lr": 1.9666505859174462e-05, "epoch": 1.752, "percentage": 17.74, "elapsed_time": "1:29:30", "remaining_time": "6:54:58"}
12
+ {"current_steps": 120, "total_steps": 620, "loss": 1.7185, "lr": 1.9507079544701583e-05, "epoch": 1.912, "percentage": 19.35, "elapsed_time": "1:37:41", "remaining_time": "6:47:04"}
13
+ {"current_steps": 130, "total_steps": 620, "loss": 1.5598, "lr": 1.9317525684566686e-05, "epoch": 2.064, "percentage": 20.97, "elapsed_time": "1:45:28", "remaining_time": "6:37:33"}
14
+ {"current_steps": 140, "total_steps": 620, "loss": 1.6693, "lr": 1.9098444967188308e-05, "epoch": 2.224, "percentage": 22.58, "elapsed_time": "1:53:40", "remaining_time": "6:29:43"}
15
+ {"current_steps": 150, "total_steps": 620, "loss": 1.5646, "lr": 1.8850531650386154e-05, "epoch": 2.384, "percentage": 24.19, "elapsed_time": "2:01:51", "remaining_time": "6:21:50"}
16
+ {"current_steps": 160, "total_steps": 620, "loss": 1.4366, "lr": 1.857457136130651e-05, "epoch": 2.544, "percentage": 25.81, "elapsed_time": "2:10:02", "remaining_time": "6:13:51"}
17
+ {"current_steps": 170, "total_steps": 620, "loss": 1.4132, "lr": 1.827143860680199e-05, "epoch": 2.7039999999999997, "percentage": 27.42, "elapsed_time": "2:18:13", "remaining_time": "6:05:53"}
18
+ {"current_steps": 180, "total_steps": 620, "loss": 1.3689, "lr": 1.7942094002155122e-05, "epoch": 2.864, "percentage": 29.03, "elapsed_time": "2:26:24", "remaining_time": "5:57:52"}
19
+ {"current_steps": 190, "total_steps": 620, "loss": 1.2682, "lr": 1.758758122692791e-05, "epoch": 3.016, "percentage": 30.65, "elapsed_time": "2:34:11", "remaining_time": "5:48:57"}
20
+ {"current_steps": 200, "total_steps": 620, "loss": 1.2686, "lr": 1.7209023717584013e-05, "epoch": 3.176, "percentage": 32.26, "elapsed_time": "2:42:22", "remaining_time": "5:40:59"}
21
+ {"current_steps": 210, "total_steps": 620, "loss": 1.2347, "lr": 1.6807621107364613e-05, "epoch": 3.336, "percentage": 33.87, "elapsed_time": "2:50:34", "remaining_time": "5:33:00"}
22
+ {"current_steps": 220, "total_steps": 620, "loss": 1.2462, "lr": 1.6384645424699835e-05, "epoch": 3.496, "percentage": 35.48, "elapsed_time": "2:58:44", "remaining_time": "5:24:59"}
23
+ {"current_steps": 230, "total_steps": 620, "loss": 1.2536, "lr": 1.594143706220273e-05, "epoch": 3.656, "percentage": 37.1, "elapsed_time": "3:06:56", "remaining_time": "5:16:58"}
24
+ {"current_steps": 240, "total_steps": 620, "loss": 1.2723, "lr": 1.5479400529019987e-05, "epoch": 3.816, "percentage": 38.71, "elapsed_time": "3:15:08", "remaining_time": "5:08:57"}
25
+ {"current_steps": 250, "total_steps": 620, "loss": 1.2036, "lr": 1.5000000000000002e-05, "epoch": 3.976, "percentage": 40.32, "elapsed_time": "3:23:18", "remaining_time": "5:00:53"}
26
+ {"current_steps": 260, "total_steps": 620, "loss": 1.0922, "lr": 1.4504754675782731e-05, "epoch": 4.128, "percentage": 41.94, "elapsed_time": "3:31:04", "remaining_time": "4:52:15"}
27
+ {"current_steps": 270, "total_steps": 620, "loss": 1.0985, "lr": 1.3995233968515105e-05, "epoch": 4.288, "percentage": 43.55, "elapsed_time": "3:39:15", "remaining_time": "4:44:13"}
28
+ {"current_steps": 280, "total_steps": 620, "loss": 1.1152, "lr": 1.3473052528448203e-05, "epoch": 4.448, "percentage": 45.16, "elapsed_time": "3:47:27", "remaining_time": "4:36:11"}
29
+ {"current_steps": 290, "total_steps": 620, "loss": 1.1175, "lr": 1.2939865127176771e-05, "epoch": 4.608, "percentage": 46.77, "elapsed_time": "3:55:38", "remaining_time": "4:28:08"}
30
+ {"current_steps": 300, "total_steps": 620, "loss": 1.119, "lr": 1.2397361413735785e-05, "epoch": 4.768, "percentage": 48.39, "elapsed_time": "4:03:50", "remaining_time": "4:20:05"}
31
+ {"current_steps": 310, "total_steps": 620, "loss": 1.1175, "lr": 1.1847260560171895e-05, "epoch": 4.928, "percentage": 50.0, "elapsed_time": "4:12:01", "remaining_time": "4:12:01"}
32
+ {"current_steps": 320, "total_steps": 620, "loss": 1.0205, "lr": 1.1291305813557616e-05, "epoch": 5.08, "percentage": 51.61, "elapsed_time": "4:19:49", "remaining_time": "4:03:34"}
33
+ {"current_steps": 330, "total_steps": 620, "loss": 1.0235, "lr": 1.0731258971712762e-05, "epoch": 5.24, "percentage": 53.23, "elapsed_time": "4:28:00", "remaining_time": "3:55:31"}
34
+ {"current_steps": 340, "total_steps": 620, "loss": 1.0103, "lr": 1.0168894800139311e-05, "epoch": 5.4, "percentage": 54.84, "elapsed_time": "4:36:11", "remaining_time": "3:47:27"}
35
+ {"current_steps": 350, "total_steps": 620, "loss": 0.999, "lr": 9.605995407862248e-06, "epoch": 5.5600000000000005, "percentage": 56.45, "elapsed_time": "4:44:22", "remaining_time": "3:39:22"}
36
+ {"current_steps": 360, "total_steps": 620, "loss": 0.9866, "lr": 9.04434459999902e-06, "epoch": 5.72, "percentage": 58.06, "elapsed_time": "4:52:33", "remaining_time": "3:31:17"}
37
+ {"current_steps": 370, "total_steps": 620, "loss": 1.0309, "lr": 8.485722224954237e-06, "epoch": 5.88, "percentage": 59.68, "elapsed_time": "5:00:45", "remaining_time": "3:23:12"}
38
+ {"current_steps": 380, "total_steps": 620, "loss": 0.9126, "lr": 7.93189853415293e-06, "epoch": 6.032, "percentage": 61.29, "elapsed_time": "5:08:32", "remaining_time": "3:14:52"}
39
+ {"current_steps": 390, "total_steps": 620, "loss": 0.9194, "lr": 7.384628572186334e-06, "epoch": 6.192, "percentage": 62.9, "elapsed_time": "5:16:43", "remaining_time": "3:06:47"}
40
+ {"current_steps": 400, "total_steps": 620, "loss": 0.907, "lr": 6.845646615147445e-06, "epoch": 6.352, "percentage": 64.52, "elapsed_time": "5:24:54", "remaining_time": "2:58:42"}
41
+ {"current_steps": 410, "total_steps": 620, "loss": 0.9, "lr": 6.31666067478113e-06, "epoch": 6.5120000000000005, "percentage": 66.13, "elapsed_time": "5:33:05", "remaining_time": "2:50:36"}
42
+ {"current_steps": 420, "total_steps": 620, "loss": 0.8984, "lr": 5.799347085864851e-06, "epoch": 6.672, "percentage": 67.74, "elapsed_time": "5:41:16", "remaining_time": "2:42:30"}
43
+ {"current_steps": 430, "total_steps": 620, "loss": 0.8658, "lr": 5.295345193972445e-06, "epoch": 6.832, "percentage": 69.35, "elapsed_time": "5:49:27", "remaining_time": "2:34:24"}
44
+ {"current_steps": 440, "total_steps": 620, "loss": 0.9213, "lr": 4.8062521604551245e-06, "epoch": 6.992, "percentage": 70.97, "elapsed_time": "5:57:39", "remaining_time": "2:26:18"}
45
+ {"current_steps": 450, "total_steps": 620, "loss": 0.7661, "lr": 4.333617901102592e-06, "epoch": 7.144, "percentage": 72.58, "elapsed_time": "6:05:26", "remaining_time": "2:18:03"}
46
+ {"current_steps": 460, "total_steps": 620, "loss": 0.791, "lr": 3.878940174523371e-06, "epoch": 7.304, "percentage": 74.19, "elapsed_time": "6:13:37", "remaining_time": "2:09:57"}
47
+ {"current_steps": 470, "total_steps": 620, "loss": 0.8174, "lr": 3.4436598358091577e-06, "epoch": 7.464, "percentage": 75.81, "elapsed_time": "6:21:49", "remaining_time": "2:01:51"}
48
+ {"current_steps": 480, "total_steps": 620, "loss": 0.8107, "lr": 3.0291562705240107e-06, "epoch": 7.624, "percentage": 77.42, "elapsed_time": "6:30:00", "remaining_time": "1:53:45"}
49
+ {"current_steps": 490, "total_steps": 620, "loss": 0.8199, "lr": 2.6367430234880286e-06, "epoch": 7.784, "percentage": 79.03, "elapsed_time": "6:38:11", "remaining_time": "1:45:38"}
50
+ {"current_steps": 500, "total_steps": 620, "loss": 0.819, "lr": 2.2676636362076075e-06, "epoch": 7.944, "percentage": 80.65, "elapsed_time": "6:46:23", "remaining_time": "1:37:31"}
51
+ {"current_steps": 510, "total_steps": 620, "loss": 0.7425, "lr": 1.9230877061433505e-06, "epoch": 8.096, "percentage": 82.26, "elapsed_time": "6:54:10", "remaining_time": "1:29:19"}
52
+ {"current_steps": 520, "total_steps": 620, "loss": 0.731, "lr": 1.60410718030361e-06, "epoch": 8.256, "percentage": 83.87, "elapsed_time": "7:02:22", "remaining_time": "1:21:13"}
53
+ {"current_steps": 530, "total_steps": 620, "loss": 0.7354, "lr": 1.3117328949091634e-06, "epoch": 8.416, "percentage": 85.48, "elapsed_time": "7:10:33", "remaining_time": "1:13:06"}
54
+ {"current_steps": 540, "total_steps": 620, "loss": 0.7442, "lr": 1.0468913720946084e-06, "epoch": 8.576, "percentage": 87.1, "elapsed_time": "7:18:45", "remaining_time": "1:05:00"}
55
+ {"current_steps": 550, "total_steps": 620, "loss": 0.7333, "lr": 8.10421883797694e-07, "epoch": 8.736, "percentage": 88.71, "elapsed_time": "7:26:56", "remaining_time": "0:56:53"}
56
+ {"current_steps": 560, "total_steps": 620, "loss": 0.7399, "lr": 6.030737921409169e-07, "epoch": 8.896, "percentage": 90.32, "elapsed_time": "7:35:08", "remaining_time": "0:48:45"}
57
+ {"current_steps": 570, "total_steps": 620, "loss": 0.6996, "lr": 4.2550417473364524e-07, "epoch": 9.048, "percentage": 91.94, "elapsed_time": "7:42:54", "remaining_time": "0:40:36"}
58
+ {"current_steps": 580, "total_steps": 620, "loss": 0.7126, "lr": 2.7827574242009434e-07, "epoch": 9.208, "percentage": 93.55, "elapsed_time": "7:51:05", "remaining_time": "0:32:29"}
59
+ {"current_steps": 590, "total_steps": 620, "loss": 0.6958, "lr": 1.6185505607171027e-07, "epoch": 9.368, "percentage": 95.16, "elapsed_time": "7:59:17", "remaining_time": "0:24:22"}
60
+ {"current_steps": 600, "total_steps": 620, "loss": 0.7154, "lr": 7.661104807487607e-08, "epoch": 9.528, "percentage": 96.77, "elapsed_time": "8:07:28", "remaining_time": "0:16:14"}
61
+ {"current_steps": 610, "total_steps": 620, "loss": 0.7047, "lr": 2.2813853199292745e-08, "epoch": 9.688, "percentage": 98.39, "elapsed_time": "8:15:40", "remaining_time": "0:08:07"}
62
+ {"current_steps": 620, "total_steps": 620, "loss": 0.7091, "lr": 6.339525519594159e-10, "epoch": 9.848, "percentage": 100.0, "elapsed_time": "8:23:51", "remaining_time": "0:00:00"}
63
+ {"current_steps": 620, "total_steps": 620, "epoch": 9.848, "percentage": 100.0, "elapsed_time": "8:23:53", "remaining_time": "0:00:00"}
trainer_state.json CHANGED
@@ -1,349 +1,461 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 14.544,
5
  "eval_steps": 500,
6
- "global_step": 465,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
- "epoch": 0.32,
13
- "grad_norm": 72.67546081542969,
14
- "learning_rate": 3.8297872340425535e-06,
15
- "loss": 10.0348,
16
  "step": 10
17
  },
18
  {
19
- "epoch": 0.64,
20
- "grad_norm": 41.243839263916016,
21
- "learning_rate": 8.085106382978723e-06,
22
- "loss": 4.7312,
23
  "step": 20
24
  },
25
  {
26
- "epoch": 0.96,
27
- "grad_norm": 34.776241302490234,
28
- "learning_rate": 1.2340425531914895e-05,
29
- "loss": 3.4362,
30
  "step": 30
31
  },
32
  {
33
- "epoch": 1.256,
34
- "grad_norm": 12.210166931152344,
35
- "learning_rate": 1.6595744680851064e-05,
36
- "loss": 2.5739,
37
  "step": 40
38
  },
39
  {
40
- "epoch": 1.576,
41
- "grad_norm": 11.936144828796387,
42
- "learning_rate": 1.9998870284726968e-05,
43
- "loss": 2.4828,
44
  "step": 50
45
  },
46
  {
47
- "epoch": 1.896,
48
- "grad_norm": 5.305131912231445,
49
- "learning_rate": 1.9959357045100764e-05,
50
- "loss": 2.1904,
51
  "step": 60
52
  },
53
  {
54
- "epoch": 2.192,
55
- "grad_norm": 6.481784820556641,
56
- "learning_rate": 1.9863613034027224e-05,
57
- "loss": 1.893,
58
  "step": 70
59
  },
60
  {
61
- "epoch": 2.512,
62
- "grad_norm": 2.9933059215545654,
63
- "learning_rate": 1.971217882451521e-05,
64
- "loss": 1.9328,
65
  "step": 80
66
  },
67
  {
68
- "epoch": 2.832,
69
- "grad_norm": 5.0720906257629395,
70
- "learning_rate": 1.9505909417784758e-05,
71
- "loss": 1.8361,
72
  "step": 90
73
  },
74
  {
75
- "epoch": 3.128,
76
- "grad_norm": 4.453537940979004,
77
- "learning_rate": 1.9245969415909464e-05,
78
- "loss": 1.6677,
79
  "step": 100
80
  },
81
  {
82
- "epoch": 3.448,
83
- "grad_norm": 3.9254183769226074,
84
- "learning_rate": 1.8933826446444933e-05,
85
- "loss": 1.7492,
86
  "step": 110
87
  },
88
  {
89
- "epoch": 3.768,
90
- "grad_norm": 2.421752691268921,
91
- "learning_rate": 1.8571242876167995e-05,
92
- "loss": 1.6435,
93
  "step": 120
94
  },
95
  {
96
- "epoch": 4.064,
97
- "grad_norm": 3.5012094974517822,
98
- "learning_rate": 1.8160265860711134e-05,
99
- "loss": 1.478,
100
  "step": 130
101
  },
102
  {
103
- "epoch": 4.384,
104
- "grad_norm": 4.192974090576172,
105
- "learning_rate": 1.770321578627213e-05,
106
- "loss": 1.4807,
107
  "step": 140
108
  },
109
  {
110
- "epoch": 4.704,
111
- "grad_norm": 2.528031826019287,
112
- "learning_rate": 1.7202673168657318e-05,
113
- "loss": 1.375,
114
  "step": 150
115
  },
116
  {
117
- "epoch": 5.0,
118
- "grad_norm": 1.0680221319198608,
119
- "learning_rate": 1.6661464083626734e-05,
120
- "loss": 1.2751,
121
  "step": 160
122
  },
123
  {
124
- "epoch": 5.32,
125
- "grad_norm": 2.499868392944336,
126
- "learning_rate": 1.6082644210801846e-05,
127
- "loss": 1.2887,
128
  "step": 170
129
  },
130
  {
131
- "epoch": 5.64,
132
- "grad_norm": 2.785773754119873,
133
- "learning_rate": 1.5469481581224274e-05,
134
- "loss": 1.2852,
135
  "step": 180
136
  },
137
  {
138
- "epoch": 5.96,
139
- "grad_norm": 2.820884943008423,
140
- "learning_rate": 1.4825438125973263e-05,
141
- "loss": 1.2329,
142
  "step": 190
143
  },
144
  {
145
- "epoch": 6.256,
146
- "grad_norm": 2.5425021648406982,
147
- "learning_rate": 1.4154150130018867e-05,
148
- "loss": 1.1001,
149
  "step": 200
150
  },
151
  {
152
- "epoch": 6.576,
153
- "grad_norm": 2.7974514961242676,
154
- "learning_rate": 1.3459407701668762e-05,
155
- "loss": 1.1543,
156
  "step": 210
157
  },
158
  {
159
- "epoch": 6.896,
160
- "grad_norm": 2.438002586364746,
161
- "learning_rate": 1.2745133373524855e-05,
162
- "loss": 1.132,
163
  "step": 220
164
  },
165
  {
166
- "epoch": 7.192,
167
- "grad_norm": 2.9781107902526855,
168
- "learning_rate": 1.2015359955769021e-05,
169
- "loss": 1.0284,
170
  "step": 230
171
  },
172
  {
173
- "epoch": 7.5120000000000005,
174
- "grad_norm": 3.271495819091797,
175
- "learning_rate": 1.127420776681905e-05,
176
- "loss": 1.0392,
177
  "step": 240
178
  },
179
  {
180
- "epoch": 7.832,
181
- "grad_norm": 3.1173477172851562,
182
- "learning_rate": 1.0525861369910877e-05,
183
- "loss": 1.0436,
184
  "step": 250
185
  },
186
  {
187
- "epoch": 8.128,
188
- "grad_norm": 2.84490704536438,
189
- "learning_rate": 9.77454594695308e-06,
190
- "loss": 0.8973,
191
  "step": 260
192
  },
193
  {
194
- "epoch": 8.448,
195
- "grad_norm": 3.3770253658294678,
196
- "learning_rate": 9.024503443047318e-06,
197
- "loss": 0.9455,
198
  "step": 270
199
  },
200
  {
201
- "epoch": 8.768,
202
- "grad_norm": 3.168492317199707,
203
- "learning_rate": 8.279968616363417e-06,
204
- "loss": 0.9297,
205
  "step": 280
206
  },
207
  {
208
- "epoch": 9.064,
209
- "grad_norm": 3.5850722789764404,
210
- "learning_rate": 7.545145128592009e-06,
211
- "loss": 0.8414,
212
  "step": 290
213
  },
214
  {
215
- "epoch": 9.384,
216
- "grad_norm": 2.5484402179718018,
217
- "learning_rate": 6.824181810968675e-06,
218
- "loss": 0.8513,
219
  "step": 300
220
  },
221
  {
222
- "epoch": 9.704,
223
- "grad_norm": 3.354924201965332,
224
- "learning_rate": 6.121149239872151e-06,
225
- "loss": 0.8351,
226
  "step": 310
227
  },
228
  {
229
- "epoch": 10.0,
230
- "grad_norm": 1.4634054899215698,
231
- "learning_rate": 5.440016754251364e-06,
232
- "loss": 0.7886,
233
  "step": 320
234
  },
235
  {
236
- "epoch": 10.32,
237
- "grad_norm": 3.3187077045440674,
238
- "learning_rate": 4.784630044641435e-06,
239
- "loss": 0.7832,
240
  "step": 330
241
  },
242
  {
243
- "epoch": 10.64,
244
- "grad_norm": 2.827324390411377,
245
- "learning_rate": 4.1586894403016576e-06,
246
- "loss": 0.7555,
247
  "step": 340
248
  },
249
  {
250
- "epoch": 10.96,
251
- "grad_norm": 2.74627685546875,
252
- "learning_rate": 3.565729017066729e-06,
253
- "loss": 0.7529,
254
  "step": 350
255
  },
256
  {
257
- "epoch": 11.256,
258
- "grad_norm": 2.8250672817230225,
259
- "learning_rate": 3.0090966438688774e-06,
260
- "loss": 0.6507,
261
  "step": 360
262
  },
263
  {
264
- "epoch": 11.576,
265
- "grad_norm": 3.070279359817505,
266
- "learning_rate": 2.491935080588658e-06,
267
- "loss": 0.7048,
268
  "step": 370
269
  },
270
  {
271
- "epoch": 11.896,
272
- "grad_norm": 2.929745674133301,
273
- "learning_rate": 2.01716423395644e-06,
274
- "loss": 0.6911,
275
  "step": 380
276
  },
277
  {
278
- "epoch": 12.192,
279
- "grad_norm": 2.552579879760742,
280
- "learning_rate": 1.587464671688187e-06,
281
- "loss": 0.6039,
282
  "step": 390
283
  },
284
  {
285
- "epoch": 12.512,
286
- "grad_norm": 2.608180046081543,
287
- "learning_rate": 1.2052624879351105e-06,
288
- "loss": 0.6456,
289
  "step": 400
290
  },
291
  {
292
- "epoch": 12.832,
293
- "grad_norm": 2.6534199714660645,
294
- "learning_rate": 8.727156054972374e-07,
295
- "loss": 0.6479,
296
  "step": 410
297
  },
298
  {
299
- "epoch": 13.128,
300
- "grad_norm": 2.4939088821411133,
301
- "learning_rate": 5.917015921389569e-07,
302
- "loss": 0.6013,
303
  "step": 420
304
  },
305
  {
306
- "epoch": 13.448,
307
- "grad_norm": 2.7369675636291504,
308
- "learning_rate": 3.638070597958665e-07,
309
- "loss": 0.6168,
310
  "step": 430
311
  },
312
  {
313
- "epoch": 13.768,
314
- "grad_norm": 2.4181711673736572,
315
- "learning_rate": 1.903187065253076e-07,
316
- "loss": 0.6093,
317
  "step": 440
318
  },
319
  {
320
- "epoch": 14.064,
321
- "grad_norm": 2.7222864627838135,
322
- "learning_rate": 7.22160517779169e-08,
323
- "loss": 0.5911,
324
  "step": 450
325
  },
326
  {
327
- "epoch": 14.384,
328
- "grad_norm": 2.8161678314208984,
329
- "learning_rate": 1.0165906007056914e-08,
330
- "loss": 0.6135,
331
  "step": 460
332
  },
333
  {
334
- "epoch": 14.544,
335
- "step": 465,
336
- "total_flos": 1.565274744469586e+17,
337
- "train_loss": 1.4569768874875961,
338
- "train_runtime": 22995.3507,
339
- "train_samples_per_second": 0.652,
340
- "train_steps_per_second": 0.02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341
  }
342
  ],
343
  "logging_steps": 10,
344
- "max_steps": 465,
345
  "num_input_tokens_seen": 0,
346
- "num_train_epochs": 15,
347
  "save_steps": 1000,
348
  "stateful_callbacks": {
349
  "TrainerControl": {
@@ -357,7 +469,7 @@
357
  "attributes": {}
358
  }
359
  },
360
- "total_flos": 1.565274744469586e+17,
361
  "train_batch_size": 4,
362
  "trial_name": null,
363
  "trial_params": null
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 9.848,
5
  "eval_steps": 500,
6
+ "global_step": 620,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
+ "epoch": 0.16,
13
+ "grad_norm": 53.243560791015625,
14
+ "learning_rate": 2.580645161290323e-06,
15
+ "loss": 14.2026,
16
  "step": 10
17
  },
18
  {
19
+ "epoch": 0.32,
20
+ "grad_norm": 18.361902236938477,
21
+ "learning_rate": 5.806451612903226e-06,
22
+ "loss": 6.1329,
23
  "step": 20
24
  },
25
  {
26
+ "epoch": 0.48,
27
+ "grad_norm": 19.430877685546875,
28
+ "learning_rate": 9.03225806451613e-06,
29
+ "loss": 4.058,
30
  "step": 30
31
  },
32
  {
33
+ "epoch": 0.64,
34
+ "grad_norm": 15.267464637756348,
35
+ "learning_rate": 1.2258064516129034e-05,
36
+ "loss": 3.097,
37
  "step": 40
38
  },
39
  {
40
+ "epoch": 0.8,
41
+ "grad_norm": 9.403186798095703,
42
+ "learning_rate": 1.5483870967741936e-05,
43
+ "loss": 2.8274,
44
  "step": 50
45
  },
46
  {
47
+ "epoch": 0.96,
48
+ "grad_norm": 6.261369228363037,
49
+ "learning_rate": 1.870967741935484e-05,
50
+ "loss": 2.4626,
51
  "step": 60
52
  },
53
  {
54
+ "epoch": 1.112,
55
+ "grad_norm": 5.149415493011475,
56
+ "learning_rate": 1.999429490929718e-05,
57
+ "loss": 2.1131,
58
  "step": 70
59
  },
60
  {
61
+ "epoch": 1.272,
62
+ "grad_norm": 4.141679286956787,
63
+ "learning_rate": 1.9959454037227215e-05,
64
+ "loss": 2.0099,
65
  "step": 80
66
  },
67
  {
68
+ "epoch": 1.432,
69
+ "grad_norm": 4.4521870613098145,
70
+ "learning_rate": 1.989305206325792e-05,
71
+ "loss": 1.8846,
72
  "step": 90
73
  },
74
  {
75
+ "epoch": 1.592,
76
+ "grad_norm": 6.675071716308594,
77
+ "learning_rate": 1.9795299412524948e-05,
78
+ "loss": 1.8903,
79
  "step": 100
80
  },
81
  {
82
+ "epoch": 1.752,
83
+ "grad_norm": 4.7035231590271,
84
+ "learning_rate": 1.9666505859174462e-05,
85
+ "loss": 1.7584,
86
  "step": 110
87
  },
88
  {
89
+ "epoch": 1.912,
90
+ "grad_norm": 6.597540855407715,
91
+ "learning_rate": 1.9507079544701583e-05,
92
+ "loss": 1.7185,
93
  "step": 120
94
  },
95
  {
96
+ "epoch": 2.064,
97
+ "grad_norm": 4.8695759773254395,
98
+ "learning_rate": 1.9317525684566686e-05,
99
+ "loss": 1.5598,
100
  "step": 130
101
  },
102
  {
103
+ "epoch": 2.224,
104
+ "grad_norm": 3.69114351272583,
105
+ "learning_rate": 1.9098444967188308e-05,
106
+ "loss": 1.6693,
107
  "step": 140
108
  },
109
  {
110
+ "epoch": 2.384,
111
+ "grad_norm": 3.190814733505249,
112
+ "learning_rate": 1.8850531650386154e-05,
113
+ "loss": 1.5646,
114
  "step": 150
115
  },
116
  {
117
+ "epoch": 2.544,
118
+ "grad_norm": 3.4081127643585205,
119
+ "learning_rate": 1.857457136130651e-05,
120
+ "loss": 1.4366,
121
  "step": 160
122
  },
123
  {
124
+ "epoch": 2.7039999999999997,
125
+ "grad_norm": 2.457369327545166,
126
+ "learning_rate": 1.827143860680199e-05,
127
+ "loss": 1.4132,
128
  "step": 170
129
  },
130
  {
131
+ "epoch": 2.864,
132
+ "grad_norm": 2.4000205993652344,
133
+ "learning_rate": 1.7942094002155122e-05,
134
+ "loss": 1.3689,
135
  "step": 180
136
  },
137
  {
138
+ "epoch": 3.016,
139
+ "grad_norm": 2.56905198097229,
140
+ "learning_rate": 1.758758122692791e-05,
141
+ "loss": 1.2682,
142
  "step": 190
143
  },
144
  {
145
+ "epoch": 3.176,
146
+ "grad_norm": 2.089385986328125,
147
+ "learning_rate": 1.7209023717584013e-05,
148
+ "loss": 1.2686,
149
  "step": 200
150
  },
151
  {
152
+ "epoch": 3.336,
153
+ "grad_norm": 2.0517237186431885,
154
+ "learning_rate": 1.6807621107364613e-05,
155
+ "loss": 1.2347,
156
  "step": 210
157
  },
158
  {
159
+ "epoch": 3.496,
160
+ "grad_norm": 2.282109260559082,
161
+ "learning_rate": 1.6384645424699835e-05,
162
+ "loss": 1.2462,
163
  "step": 220
164
  },
165
  {
166
+ "epoch": 3.656,
167
+ "grad_norm": 2.201382637023926,
168
+ "learning_rate": 1.594143706220273e-05,
169
+ "loss": 1.2536,
170
  "step": 230
171
  },
172
  {
173
+ "epoch": 3.816,
174
+ "grad_norm": 1.6903492212295532,
175
+ "learning_rate": 1.5479400529019987e-05,
176
+ "loss": 1.2723,
177
  "step": 240
178
  },
179
  {
180
+ "epoch": 3.976,
181
+ "grad_norm": 2.2920656204223633,
182
+ "learning_rate": 1.5000000000000002e-05,
183
+ "loss": 1.2036,
184
  "step": 250
185
  },
186
  {
187
+ "epoch": 4.128,
188
+ "grad_norm": 2.610243320465088,
189
+ "learning_rate": 1.4504754675782731e-05,
190
+ "loss": 1.0922,
191
  "step": 260
192
  },
193
  {
194
+ "epoch": 4.288,
195
+ "grad_norm": 2.494142770767212,
196
+ "learning_rate": 1.3995233968515105e-05,
197
+ "loss": 1.0985,
198
  "step": 270
199
  },
200
  {
201
+ "epoch": 4.448,
202
+ "grad_norm": 1.8717281818389893,
203
+ "learning_rate": 1.3473052528448203e-05,
204
+ "loss": 1.1152,
205
  "step": 280
206
  },
207
  {
208
+ "epoch": 4.608,
209
+ "grad_norm": 2.3531064987182617,
210
+ "learning_rate": 1.2939865127176771e-05,
211
+ "loss": 1.1175,
212
  "step": 290
213
  },
214
  {
215
+ "epoch": 4.768,
216
+ "grad_norm": 2.1707255840301514,
217
+ "learning_rate": 1.2397361413735785e-05,
218
+ "loss": 1.119,
219
  "step": 300
220
  },
221
  {
222
+ "epoch": 4.928,
223
+ "grad_norm": 2.2494473457336426,
224
+ "learning_rate": 1.1847260560171895e-05,
225
+ "loss": 1.1175,
226
  "step": 310
227
  },
228
  {
229
+ "epoch": 5.08,
230
+ "grad_norm": 2.7846431732177734,
231
+ "learning_rate": 1.1291305813557616e-05,
232
+ "loss": 1.0205,
233
  "step": 320
234
  },
235
  {
236
+ "epoch": 5.24,
237
+ "grad_norm": 2.8679280281066895,
238
+ "learning_rate": 1.0731258971712762e-05,
239
+ "loss": 1.0235,
240
  "step": 330
241
  },
242
  {
243
+ "epoch": 5.4,
244
+ "grad_norm": 2.4637234210968018,
245
+ "learning_rate": 1.0168894800139311e-05,
246
+ "loss": 1.0103,
247
  "step": 340
248
  },
249
  {
250
+ "epoch": 5.5600000000000005,
251
+ "grad_norm": 2.420814275741577,
252
+ "learning_rate": 9.605995407862248e-06,
253
+ "loss": 0.999,
254
  "step": 350
255
  },
256
  {
257
+ "epoch": 5.72,
258
+ "grad_norm": 2.7816896438598633,
259
+ "learning_rate": 9.04434459999902e-06,
260
+ "loss": 0.9866,
261
  "step": 360
262
  },
263
  {
264
+ "epoch": 5.88,
265
+ "grad_norm": 3.1777126789093018,
266
+ "learning_rate": 8.485722224954237e-06,
267
+ "loss": 1.0309,
268
  "step": 370
269
  },
270
  {
271
+ "epoch": 6.032,
272
+ "grad_norm": 2.992114782333374,
273
+ "learning_rate": 7.93189853415293e-06,
274
+ "loss": 0.9126,
275
  "step": 380
276
  },
277
  {
278
+ "epoch": 6.192,
279
+ "grad_norm": 2.742065906524658,
280
+ "learning_rate": 7.384628572186334e-06,
281
+ "loss": 0.9194,
282
  "step": 390
283
  },
284
  {
285
+ "epoch": 6.352,
286
+ "grad_norm": 2.3192052841186523,
287
+ "learning_rate": 6.845646615147445e-06,
288
+ "loss": 0.907,
289
  "step": 400
290
  },
291
  {
292
+ "epoch": 6.5120000000000005,
293
+ "grad_norm": 3.0966978073120117,
294
+ "learning_rate": 6.31666067478113e-06,
295
+ "loss": 0.9,
296
  "step": 410
297
  },
298
  {
299
+ "epoch": 6.672,
300
+ "grad_norm": 2.693567991256714,
301
+ "learning_rate": 5.799347085864851e-06,
302
+ "loss": 0.8984,
303
  "step": 420
304
  },
305
  {
306
+ "epoch": 6.832,
307
+ "grad_norm": 2.535724639892578,
308
+ "learning_rate": 5.295345193972445e-06,
309
+ "loss": 0.8658,
310
  "step": 430
311
  },
312
  {
313
+ "epoch": 6.992,
314
+ "grad_norm": 2.9776270389556885,
315
+ "learning_rate": 4.8062521604551245e-06,
316
+ "loss": 0.9213,
317
  "step": 440
318
  },
319
  {
320
+ "epoch": 7.144,
321
+ "grad_norm": 2.5464305877685547,
322
+ "learning_rate": 4.333617901102592e-06,
323
+ "loss": 0.7661,
324
  "step": 450
325
  },
326
  {
327
+ "epoch": 7.304,
328
+ "grad_norm": 2.318953037261963,
329
+ "learning_rate": 3.878940174523371e-06,
330
+ "loss": 0.791,
331
  "step": 460
332
  },
333
  {
334
+ "epoch": 7.464,
335
+ "grad_norm": 3.2819600105285645,
336
+ "learning_rate": 3.4436598358091577e-06,
337
+ "loss": 0.8174,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 7.624,
342
+ "grad_norm": 2.2935101985931396,
343
+ "learning_rate": 3.0291562705240107e-06,
344
+ "loss": 0.8107,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 7.784,
349
+ "grad_norm": 3.059847354888916,
350
+ "learning_rate": 2.6367430234880286e-06,
351
+ "loss": 0.8199,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 7.944,
356
+ "grad_norm": 2.7650320529937744,
357
+ "learning_rate": 2.2676636362076075e-06,
358
+ "loss": 0.819,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 8.096,
363
+ "grad_norm": 3.0527632236480713,
364
+ "learning_rate": 1.9230877061433505e-06,
365
+ "loss": 0.7425,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 8.256,
370
+ "grad_norm": 2.6537036895751953,
371
+ "learning_rate": 1.60410718030361e-06,
372
+ "loss": 0.731,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 8.416,
377
+ "grad_norm": 2.6983063220977783,
378
+ "learning_rate": 1.3117328949091634e-06,
379
+ "loss": 0.7354,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 8.576,
384
+ "grad_norm": 2.4979090690612793,
385
+ "learning_rate": 1.0468913720946084e-06,
386
+ "loss": 0.7442,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 8.736,
391
+ "grad_norm": 2.457855463027954,
392
+ "learning_rate": 8.10421883797694e-07,
393
+ "loss": 0.7333,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 8.896,
398
+ "grad_norm": 2.766944646835327,
399
+ "learning_rate": 6.030737921409169e-07,
400
+ "loss": 0.7399,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 9.048,
405
+ "grad_norm": 2.2459168434143066,
406
+ "learning_rate": 4.2550417473364524e-07,
407
+ "loss": 0.6996,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 9.208,
412
+ "grad_norm": 2.7171614170074463,
413
+ "learning_rate": 2.7827574242009434e-07,
414
+ "loss": 0.7126,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 9.368,
419
+ "grad_norm": 2.6220312118530273,
420
+ "learning_rate": 1.6185505607171027e-07,
421
+ "loss": 0.6958,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 9.528,
426
+ "grad_norm": 2.0688819885253906,
427
+ "learning_rate": 7.661104807487607e-08,
428
+ "loss": 0.7154,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 9.688,
433
+ "grad_norm": 2.2390174865722656,
434
+ "learning_rate": 2.2813853199292745e-08,
435
+ "loss": 0.7047,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 9.848,
440
+ "grad_norm": 2.2094919681549072,
441
+ "learning_rate": 6.339525519594159e-10,
442
+ "loss": 0.7091,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 9.848,
447
+ "step": 620,
448
+ "total_flos": 2.117785669819433e+17,
449
+ "train_loss": 1.5235166057463616,
450
+ "train_runtime": 30234.6635,
451
+ "train_samples_per_second": 0.661,
452
+ "train_steps_per_second": 0.021
453
  }
454
  ],
455
  "logging_steps": 10,
456
+ "max_steps": 620,
457
  "num_input_tokens_seen": 0,
458
+ "num_train_epochs": 10,
459
  "save_steps": 1000,
460
  "stateful_callbacks": {
461
  "TrainerControl": {
 
469
  "attributes": {}
470
  }
471
  },
472
+ "total_flos": 2.117785669819433e+17,
473
  "train_batch_size": 4,
474
  "trial_name": null,
475
  "trial_params": null
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7965a2214104df656922b1be16c3a7c2b84d436985ed36667de02fc406d2a34b
3
  size 5688
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc68d428446e7b26c93265364a77e73cf5e5fd379067282b28ea225efb2cb018
3
  size 5688