second model upload
Browse files- README.md +4 -4
- adapter_config.json +279 -407
- adapter_model.safetensors +2 -2
- all_results.json +6 -6
- checkpoint-465/README.md +202 -0
- checkpoint-465/adapter_config.json +335 -0
- checkpoint-465/adapter_model.safetensors +3 -0
- checkpoint-465/added_tokens.json +16 -0
- checkpoint-465/chat_template.json +3 -0
- checkpoint-465/merges.txt +0 -0
- checkpoint-465/optimizer.pt +3 -0
- checkpoint-465/preprocessor_config.json +29 -0
- checkpoint-465/rng_state_0.pth +3 -0
- checkpoint-465/rng_state_1.pth +3 -0
- checkpoint-465/scaler.pt +3 -0
- checkpoint-465/scheduler.pt +3 -0
- checkpoint-465/special_tokens_map.json +31 -0
- checkpoint-465/tokenizer.json +3 -0
- checkpoint-465/tokenizer_config.json +148 -0
- checkpoint-465/trainer_state.json +355 -0
- checkpoint-465/training_args.bin +3 -0
- checkpoint-465/vocab.json +0 -0
- runs/Mar15_18-19-23_3ecefcbf63c9/events.out.tfevents.1742062886.3ecefcbf63c9.153.0 +3 -0
- train_results.json +6 -6
- trainer_log.jsonl +47 -156
- trainer_state.json +197 -960
- training_args.bin +1 -1
README.md
CHANGED
@@ -36,18 +36,18 @@ More information needed
|
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
- learning_rate: 2e-05
|
39 |
-
- train_batch_size:
|
40 |
- eval_batch_size: 8
|
41 |
- seed: 42
|
42 |
- distributed_type: multi-GPU
|
43 |
- num_devices: 2
|
44 |
-
- gradient_accumulation_steps:
|
45 |
-
- total_train_batch_size:
|
46 |
- total_eval_batch_size: 16
|
47 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
- lr_scheduler_type: cosine
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
-
- num_epochs:
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
### Training results
|
|
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 4
|
40 |
- eval_batch_size: 8
|
41 |
- seed: 42
|
42 |
- distributed_type: multi-GPU
|
43 |
- num_devices: 2
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 32
|
46 |
- total_eval_batch_size: 16
|
47 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
- lr_scheduler_type: cosine
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 15.0
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
### Training results
|
adapter_config.json
CHANGED
@@ -20,442 +20,314 @@
|
|
20 |
"rank_pattern": {},
|
21 |
"revision": null,
|
22 |
"target_modules": [
|
23 |
-
"model.layers.
|
24 |
-
"model.layers.
|
25 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"model.layers.1.self_attn.o_proj",
|
27 |
-
"model.layers.
|
28 |
-
"model.layers.
|
29 |
-
"model.layers.
|
30 |
-
"model.layers.
|
31 |
-
"model.layers.
|
32 |
-
"model.layers.
|
33 |
-
"visual.blocks.10.attn.proj",
|
34 |
-
"visual.blocks.28.mlp.fc2",
|
35 |
"model.layers.3.self_attn_text.k_proj",
|
36 |
-
"model.layers.
|
37 |
-
"model.layers.
|
38 |
-
"
|
39 |
-
"model.layers.
|
40 |
-
"
|
41 |
-
"model.layers.
|
42 |
-
"
|
43 |
-
"model.layers.
|
44 |
-
"model.layers.
|
45 |
-
"model.layers.15.self_attn_text.q_proj",
|
46 |
-
"model.layers.2.self_attn_text.k_proj",
|
47 |
-
"model.layers.3.self_attn_text.q_proj",
|
48 |
-
"model.layers.12.mlp.down_proj",
|
49 |
-
"model.layers.14.self_attn_text.q_proj",
|
50 |
-
"model.layers.19.self_attn_text.o_proj",
|
51 |
-
"visual.blocks.23.attn.proj",
|
52 |
-
"model.layers.20.self_attn.o_proj",
|
53 |
-
"model.layers.5.self_attn_text.k_proj",
|
54 |
-
"model.layers.26.mlp.gate_proj",
|
55 |
-
"model.layers.8.self_attn.q_proj",
|
56 |
-
"model.layers.20.mlp.gate_proj",
|
57 |
-
"model.layers.16.self_attn_text.k_proj",
|
58 |
"model.layers.20.self_attn.k_proj",
|
59 |
-
"
|
60 |
-
"model.layers.
|
61 |
-
"model.layers.
|
62 |
-
"model.layers.
|
63 |
-
"model.layers.
|
64 |
-
"model.layers.16.mlp.up_proj",
|
65 |
-
"visual.blocks.16.mlp.fc2",
|
66 |
-
"model.layers.10.self_attn.v_proj",
|
67 |
-
"model.layers.17.self_attn_text.o_proj",
|
68 |
-
"model.layers.17.self_attn.v_proj",
|
69 |
-
"visual.blocks.9.mlp.fc1",
|
70 |
-
"model.layers.25.mlp.gate_proj",
|
71 |
-
"model.layers.25.self_attn_text.q_proj",
|
72 |
-
"model.layers.9.self_attn.k_proj",
|
73 |
-
"model.layers.18.self_attn.q_proj",
|
74 |
-
"visual.blocks.9.attn.proj",
|
75 |
-
"visual.blocks.14.mlp.fc1",
|
76 |
-
"model.layers.13.self_attn.o_proj",
|
77 |
-
"model.layers.24.self_attn.v_proj",
|
78 |
-
"model.layers.11.mlp.down_proj",
|
79 |
-
"model.layers.27.self_attn_text.v_proj",
|
80 |
-
"model.layers.16.self_attn_text.o_proj",
|
81 |
-
"model.layers.25.mlp.down_proj",
|
82 |
-
"visual.blocks.4.mlp.fc2",
|
83 |
-
"model.layers.27.self_attn.q_proj",
|
84 |
-
"visual.blocks.5.attn.proj",
|
85 |
"model.layers.19.mlp.gate_proj",
|
86 |
-
"model.layers.
|
87 |
-
"model.layers.19.self_attn.v_proj",
|
88 |
-
"model.layers.13.mlp.gate_proj",
|
89 |
-
"model.layers.18.self_attn.o_proj",
|
90 |
"model.layers.18.self_attn.k_proj",
|
91 |
-
"model.layers.
|
92 |
-
"model.layers.
|
93 |
-
"model.layers.
|
94 |
-
"model.layers.27.self_attn.k_proj",
|
95 |
-
"model.layers.25.self_attn.o_proj",
|
96 |
-
"visual.blocks.20.attn.proj",
|
97 |
-
"visual.blocks.26.attn.qkv",
|
98 |
-
"model.layers.23.self_attn_text.v_proj",
|
99 |
-
"visual.blocks.14.attn.qkv",
|
100 |
-
"model.layers.19.self_attn.k_proj",
|
101 |
"model.layers.13.self_attn_text.q_proj",
|
102 |
-
"model.layers.
|
103 |
-
"model.layers.
|
104 |
-
"model.layers.0.self_attn_text.
|
105 |
-
"model.layers.
|
106 |
-
"
|
107 |
-
"model.layers.
|
108 |
-
"model.layers.
|
109 |
-
"
|
110 |
-
"model.layers.
|
111 |
-
"
|
112 |
-
"model.layers.
|
113 |
-
"model.layers.
|
114 |
-
"
|
|
|
|
|
|
|
115 |
"model.layers.11.self_attn.q_proj",
|
116 |
-
"visual.blocks.19.mlp.fc1",
|
117 |
-
"visual.blocks.2.mlp.fc1",
|
118 |
-
"model.layers.26.self_attn_text.k_proj",
|
119 |
-
"model.layers.5.self_attn.q_proj",
|
120 |
-
"model.layers.7.self_attn.q_proj",
|
121 |
-
"visual.blocks.27.attn.proj",
|
122 |
"model.layers.8.self_attn_text.v_proj",
|
123 |
-
"model.layers.
|
124 |
-
"model.layers.
|
125 |
-
"visual.blocks.1.attn.proj",
|
126 |
-
"model.layers.4.self_attn_text.o_proj",
|
127 |
-
"visual.blocks.6.mlp.fc2",
|
128 |
-
"model.layers.26.self_attn_text.v_proj",
|
129 |
-
"visual.blocks.6.mlp.fc1",
|
130 |
-
"visual.blocks.31.mlp.fc1",
|
131 |
-
"model.layers.8.mlp.gate_proj",
|
132 |
-
"visual.blocks.18.mlp.fc1",
|
133 |
-
"visual.blocks.14.attn.proj",
|
134 |
-
"model.layers.15.self_attn.o_proj",
|
135 |
-
"model.layers.16.self_attn.q_proj",
|
136 |
-
"visual.blocks.7.mlp.fc2",
|
137 |
-
"model.layers.11.self_attn.k_proj",
|
138 |
-
"model.layers.7.mlp.up_proj",
|
139 |
-
"model.layers.10.self_attn_text.v_proj",
|
140 |
-
"model.layers.23.self_attn.k_proj",
|
141 |
-
"visual.blocks.11.attn.qkv",
|
142 |
-
"visual.blocks.5.attn.qkv",
|
143 |
-
"model.layers.15.self_attn_text.v_proj",
|
144 |
-
"visual.blocks.21.attn.proj",
|
145 |
-
"model.layers.10.mlp.gate_proj",
|
146 |
-
"model.layers.5.self_attn.v_proj",
|
147 |
-
"model.layers.6.mlp.down_proj",
|
148 |
-
"model.layers.9.self_attn_text.v_proj",
|
149 |
-
"model.layers.4.self_attn_text.q_proj",
|
150 |
-
"model.layers.21.self_attn.v_proj",
|
151 |
-
"model.layers.8.mlp.down_proj",
|
152 |
-
"visual.blocks.8.mlp.fc2",
|
153 |
-
"model.layers.23.self_attn_text.o_proj",
|
154 |
-
"model.layers.1.self_attn.q_proj",
|
155 |
-
"model.layers.20.self_attn_text.k_proj",
|
156 |
-
"model.layers.8.self_attn.o_proj",
|
157 |
-
"model.layers.20.self_attn_text.o_proj",
|
158 |
-
"model.layers.6.mlp.up_proj",
|
159 |
-
"model.layers.1.mlp.down_proj",
|
160 |
-
"model.layers.18.mlp.down_proj",
|
161 |
-
"model.layers.18.mlp.gate_proj",
|
162 |
-
"model.layers.11.mlp.up_proj",
|
163 |
-
"visual.blocks.2.attn.proj",
|
164 |
-
"model.layers.0.mlp.down_proj",
|
165 |
-
"visual.blocks.0.mlp.fc2",
|
166 |
-
"visual.blocks.25.attn.proj",
|
167 |
-
"model.layers.0.self_attn.k_proj",
|
168 |
-
"model.layers.27.self_attn_text.k_proj",
|
169 |
-
"visual.blocks.12.mlp.fc1",
|
170 |
-
"model.layers.9.self_attn.q_proj",
|
171 |
-
"visual.blocks.17.attn.qkv",
|
172 |
-
"model.layers.17.self_attn_text.q_proj",
|
173 |
-
"model.layers.15.mlp.gate_proj",
|
174 |
-
"visual.blocks.21.attn.qkv",
|
175 |
-
"model.layers.16.mlp.gate_proj",
|
176 |
-
"model.layers.19.self_attn_text.v_proj",
|
177 |
-
"model.layers.24.self_attn_text.q_proj",
|
178 |
-
"visual.blocks.8.mlp.fc1",
|
179 |
-
"visual.blocks.30.mlp.fc2",
|
180 |
-
"model.layers.10.self_attn.q_proj",
|
181 |
-
"model.layers.14.mlp.gate_proj",
|
182 |
-
"model.layers.5.self_attn_text.q_proj",
|
183 |
-
"visual.blocks.26.mlp.fc2",
|
184 |
-
"model.layers.1.self_attn_text.k_proj",
|
185 |
-
"visual.blocks.29.mlp.fc1",
|
186 |
-
"model.layers.18.self_attn.v_proj",
|
187 |
-
"model.layers.23.mlp.gate_proj",
|
188 |
-
"visual.blocks.13.mlp.fc1",
|
189 |
-
"model.layers.5.self_attn_text.o_proj",
|
190 |
-
"model.layers.14.mlp.up_proj",
|
191 |
-
"visual.blocks.6.attn.qkv",
|
192 |
-
"model.layers.23.mlp.up_proj",
|
193 |
-
"model.layers.14.self_attn_text.v_proj",
|
194 |
-
"visual.blocks.4.mlp.fc1",
|
195 |
-
"visual.blocks.20.attn.qkv",
|
196 |
-
"model.layers.6.self_attn_text.q_proj",
|
197 |
-
"visual.blocks.25.attn.qkv",
|
198 |
-
"visual.blocks.15.attn.qkv",
|
199 |
-
"model.layers.1.self_attn.k_proj",
|
200 |
-
"model.layers.19.self_attn.q_proj",
|
201 |
-
"model.layers.4.self_attn.o_proj",
|
202 |
-
"model.layers.8.self_attn.v_proj",
|
203 |
-
"visual.blocks.23.attn.qkv",
|
204 |
-
"model.layers.3.self_attn.q_proj",
|
205 |
-
"model.layers.5.mlp.gate_proj",
|
206 |
-
"model.layers.1.mlp.up_proj",
|
207 |
-
"model.layers.11.mlp.gate_proj",
|
208 |
-
"visual.blocks.24.mlp.fc2",
|
209 |
-
"model.layers.1.mlp.gate_proj",
|
210 |
-
"visual.blocks.20.mlp.fc1",
|
211 |
-
"visual.blocks.13.mlp.fc2",
|
212 |
-
"visual.blocks.14.mlp.fc2",
|
213 |
-
"visual.blocks.3.attn.qkv",
|
214 |
"model.layers.12.self_attn_text.q_proj",
|
215 |
-
"model.layers.
|
216 |
-
"
|
217 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
"model.layers.14.mlp.down_proj",
|
219 |
-
"
|
220 |
-
"model.layers.
|
221 |
-
"model.layers.
|
222 |
-
"model.layers.
|
223 |
-
"model.layers.
|
224 |
-
"
|
225 |
-
"model.layers.
|
226 |
-
"model.layers.
|
227 |
-
"
|
228 |
-
"model.layers.
|
229 |
-
"model.layers.
|
230 |
-
"
|
231 |
-
"model.layers.
|
232 |
-
"
|
233 |
-
"
|
234 |
-
"model.layers.
|
235 |
-
"model.layers.11.
|
236 |
-
"model.layers.
|
237 |
-
"
|
238 |
-
"
|
239 |
-
"model.layers.
|
240 |
-
"model.layers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
"model.layers.9.self_attn.v_proj",
|
242 |
-
"model.layers.
|
243 |
-
"model.layers.
|
244 |
-
"model.layers.
|
245 |
"model.layers.17.self_attn.q_proj",
|
246 |
-
"
|
247 |
-
"model.layers.
|
248 |
-
"model.layers.
|
249 |
-
"model.layers.
|
250 |
-
"model.layers.
|
251 |
-
"model.layers.6.self_attn_text.o_proj",
|
252 |
-
"model.layers.5.self_attn_text.v_proj",
|
253 |
-
"model.layers.22.mlp.gate_proj",
|
254 |
-
"model.layers.7.self_attn_text.k_proj",
|
255 |
-
"model.layers.19.mlp.down_proj",
|
256 |
-
"model.layers.6.self_attn_text.k_proj",
|
257 |
-
"model.layers.9.self_attn_text.k_proj",
|
258 |
-
"visual.blocks.15.attn.proj",
|
259 |
-
"visual.blocks.6.attn.proj",
|
260 |
-
"model.layers.22.self_attn.k_proj",
|
261 |
-
"visual.blocks.13.attn.proj",
|
262 |
-
"model.layers.0.mlp.gate_proj",
|
263 |
-
"model.layers.13.self_attn.v_proj",
|
264 |
-
"model.layers.22.self_attn.q_proj",
|
265 |
-
"model.layers.19.self_attn_text.k_proj",
|
266 |
"model.layers.10.self_attn_text.q_proj",
|
267 |
-
"model.layers.
|
268 |
-
"
|
269 |
-
"model.layers.
|
270 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
"model.layers.13.self_attn_text.o_proj",
|
272 |
-
"model.layers.
|
273 |
-
"model.layers.13.mlp.
|
274 |
-
"model.layers.
|
275 |
-
"
|
276 |
-
"
|
277 |
-
"model.layers.
|
278 |
-
"model.layers.
|
279 |
-
"
|
280 |
-
"model.layers.
|
281 |
-
"model.layers.
|
282 |
-
"model.layers.
|
283 |
-
"model.layers.
|
284 |
-
"model.layers.
|
285 |
-
"
|
286 |
-
"
|
287 |
-
"model.layers.
|
288 |
-
"
|
289 |
-
"model.layers.
|
290 |
-
"model.layers.
|
291 |
-
"
|
292 |
-
"model.layers.
|
293 |
-
"model.layers.
|
|
|
|
|
|
|
294 |
"model.layers.6.mlp.gate_proj",
|
295 |
-
"
|
296 |
-
"model.layers.
|
297 |
-
"
|
298 |
-
"model.layers.
|
299 |
-
"
|
|
|
|
|
|
|
|
|
300 |
"model.layers.10.mlp.up_proj",
|
301 |
-
"model.layers.
|
302 |
-
"
|
303 |
-
"model.layers.0.self_attn_text.k_proj",
|
304 |
-
"model.layers.25.self_attn_text.k_proj",
|
305 |
-
"visual.blocks.19.attn.qkv",
|
306 |
-
"model.layers.2.mlp.gate_proj",
|
307 |
-
"model.layers.16.self_attn_text.q_proj",
|
308 |
-
"visual.blocks.0.mlp.fc1",
|
309 |
-
"model.layers.3.mlp.up_proj",
|
310 |
-
"visual.blocks.30.mlp.fc1",
|
311 |
-
"model.layers.2.mlp.up_proj",
|
312 |
-
"visual.blocks.29.attn.qkv",
|
313 |
-
"model.layers.27.mlp.gate_proj",
|
314 |
-
"model.layers.21.self_attn_text.o_proj",
|
315 |
-
"model.layers.21.mlp.up_proj",
|
316 |
-
"model.layers.1.self_attn.v_proj",
|
317 |
-
"visual.blocks.29.attn.proj",
|
318 |
-
"model.layers.8.self_attn_text.q_proj",
|
319 |
-
"model.layers.3.self_attn_text.v_proj",
|
320 |
-
"model.layers.1.self_attn_text.v_proj",
|
321 |
-
"visual.blocks.21.mlp.fc2",
|
322 |
-
"model.layers.3.self_attn.v_proj",
|
323 |
-
"visual.blocks.4.attn.proj",
|
324 |
-
"model.layers.4.self_attn.v_proj",
|
325 |
-
"model.layers.7.self_attn_text.v_proj",
|
326 |
"model.layers.22.self_attn_text.v_proj",
|
327 |
-
"model.layers.20.self_attn.v_proj",
|
328 |
-
"model.layers.21.self_attn_text.q_proj",
|
329 |
-
"model.layers.12.self_attn.o_proj",
|
330 |
-
"visual.blocks.27.mlp.fc2",
|
331 |
-
"model.layers.18.self_attn_text.k_proj",
|
332 |
-
"model.layers.24.self_attn_text.v_proj",
|
333 |
-
"model.layers.26.mlp.up_proj",
|
334 |
-
"model.layers.8.self_attn_text.o_proj",
|
335 |
-
"visual.blocks.11.mlp.fc1",
|
336 |
-
"model.layers.1.self_attn_text.q_proj",
|
337 |
-
"model.layers.7.self_attn.v_proj",
|
338 |
-
"visual.blocks.26.mlp.fc1",
|
339 |
-
"model.layers.11.self_attn.v_proj",
|
340 |
-
"model.layers.13.self_attn.k_proj",
|
341 |
-
"model.layers.10.self_attn.o_proj",
|
342 |
-
"model.layers.15.mlp.up_proj",
|
343 |
-
"visual.blocks.15.mlp.fc1",
|
344 |
-
"model.layers.22.mlp.down_proj",
|
345 |
-
"model.layers.24.mlp.up_proj",
|
346 |
-
"visual.blocks.15.mlp.fc2",
|
347 |
-
"model.layers.10.self_attn_text.o_proj",
|
348 |
-
"model.layers.15.self_attn_text.k_proj",
|
349 |
-
"visual.blocks.1.attn.qkv",
|
350 |
-
"model.layers.11.self_attn_text.o_proj",
|
351 |
-
"visual.blocks.10.mlp.fc1",
|
352 |
"model.layers.17.mlp.down_proj",
|
353 |
-
"
|
354 |
-
"model.layers.
|
355 |
-
"
|
356 |
-
"model.layers.
|
357 |
-
"model.layers.
|
358 |
-
"model.layers.0.mlp.up_proj",
|
359 |
-
"model.layers.22.self_attn_text.q_proj",
|
360 |
-
"visual.blocks.12.mlp.fc2",
|
361 |
-
"model.layers.3.mlp.gate_proj",
|
362 |
"model.layers.18.self_attn_text.v_proj",
|
363 |
-
"model.layers.
|
364 |
-
"model.layers.
|
365 |
-
"model.layers.
|
366 |
-
"
|
367 |
-
"model.layers.
|
368 |
-
"model.layers.
|
369 |
-
"model.layers.
|
370 |
-
"visual.blocks.23.mlp.fc2",
|
371 |
"model.layers.22.self_attn.o_proj",
|
372 |
-
"model.layers.
|
373 |
-
"model.layers.
|
374 |
-
"model.layers.
|
375 |
-
"
|
376 |
-
"model.layers.
|
377 |
-
"model.layers.16.mlp.down_proj",
|
378 |
-
"model.layers.16.self_attn_text.v_proj",
|
379 |
-
"model.layers.24.self_attn_text.k_proj",
|
380 |
-
"model.layers.26.self_attn_text.q_proj",
|
381 |
-
"visual.blocks.16.attn.proj",
|
382 |
-
"visual.blocks.22.attn.qkv",
|
383 |
-
"model.layers.27.self_attn_text.o_proj",
|
384 |
-
"visual.blocks.27.mlp.fc1",
|
385 |
-
"visual.blocks.12.attn.proj",
|
386 |
-
"visual.blocks.28.attn.proj",
|
387 |
"model.layers.21.self_attn_text.k_proj",
|
388 |
-
"
|
389 |
-
"
|
390 |
-
"model.layers.
|
391 |
-
"model.layers.
|
392 |
-
"model.layers.
|
393 |
-
"model.layers.2.self_attn_text.q_proj",
|
394 |
"model.layers.15.self_attn.q_proj",
|
395 |
-
"
|
396 |
-
"
|
397 |
-
"
|
398 |
-
"model.layers.
|
399 |
-
"model.layers.
|
400 |
-
"
|
401 |
-
"model.layers.
|
402 |
-
"model.layers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
"model.layers.0.self_attn.o_proj",
|
404 |
-
"model.layers.
|
405 |
-
"
|
406 |
-
"model.layers.
|
407 |
-
"model.layers.
|
408 |
-
"
|
409 |
-
"
|
410 |
"model.layers.4.self_attn_text.v_proj",
|
411 |
-
"model.layers.
|
412 |
-
"
|
413 |
-
"model.layers.
|
414 |
-
"model.layers.
|
415 |
-
"
|
416 |
-
"model.layers.
|
417 |
-
"model.layers.
|
|
|
418 |
"model.layers.14.self_attn_text.k_proj",
|
419 |
-
"
|
420 |
-
"
|
421 |
-
"model.layers.
|
422 |
-
"model.layers.
|
423 |
-
"model.layers.
|
424 |
-
"model.layers.
|
425 |
-
"model.layers.
|
426 |
-
"model.layers.22.self_attn_text.o_proj",
|
427 |
-
"model.layers.0.self_attn_text.v_proj",
|
428 |
-
"model.layers.7.mlp.gate_proj",
|
429 |
-
"model.layers.22.self_attn.v_proj",
|
430 |
-
"model.layers.24.mlp.down_proj",
|
431 |
-
"model.layers.20.self_attn_text.q_proj",
|
432 |
-
"model.layers.2.self_attn.o_proj",
|
433 |
-
"model.layers.11.self_attn_text.k_proj",
|
434 |
-
"model.layers.24.self_attn.q_proj",
|
435 |
-
"model.layers.18.self_attn_text.q_proj",
|
436 |
-
"model.layers.6.self_attn_text.v_proj",
|
437 |
-
"model.layers.0.self_attn.q_proj",
|
438 |
-
"model.layers.25.self_attn.q_proj",
|
439 |
"model.layers.19.self_attn_text.q_proj",
|
440 |
-
"
|
441 |
-
"model.layers.
|
442 |
-
"model.layers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
"model.layers.20.self_attn_text.v_proj",
|
444 |
-
"
|
445 |
-
"
|
446 |
-
"model.layers.
|
447 |
-
"model.layers.
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
"model.layers.16.self_attn.k_proj",
|
|
|
|
|
|
|
|
|
449 |
"model.layers.24.self_attn.o_proj",
|
450 |
-
"model.layers.
|
451 |
-
"
|
452 |
-
"model.layers.
|
453 |
-
"model.layers.
|
454 |
-
"
|
455 |
-
"model.layers.
|
456 |
-
"model.layers.
|
457 |
-
"
|
458 |
-
"model.layers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
],
|
460 |
"task_type": "CAUSAL_LM",
|
461 |
"use_dora": false,
|
|
|
20 |
"rank_pattern": {},
|
21 |
"revision": null,
|
22 |
"target_modules": [
|
23 |
+
"model.layers.6.self_attn.v_proj",
|
24 |
+
"model.layers.3.self_attn.k_proj",
|
25 |
+
"model.layers.5.self_attn.k_proj",
|
26 |
+
"model.layers.20.self_attn.o_proj",
|
27 |
+
"model.layers.2.self_attn.k_proj",
|
28 |
+
"model.layers.7.self_attn_text.k_proj",
|
29 |
+
"model.layers.6.self_attn.k_proj",
|
30 |
+
"model.layers.20.self_attn.q_proj",
|
31 |
+
"model.layers.25.self_attn.q_proj",
|
32 |
"model.layers.1.self_attn.o_proj",
|
33 |
+
"model.layers.22.self_attn.k_proj",
|
34 |
+
"model.layers.8.self_attn.k_proj",
|
35 |
+
"model.layers.18.self_attn_text.k_proj",
|
36 |
+
"model.layers.10.self_attn_text.o_proj",
|
37 |
+
"model.layers.17.mlp.gate_proj",
|
38 |
+
"model.layers.2.self_attn.o_proj",
|
|
|
|
|
39 |
"model.layers.3.self_attn_text.k_proj",
|
40 |
+
"model.layers.0.self_attn_text.v_proj",
|
41 |
+
"model.layers.16.self_attn.q_proj",
|
42 |
+
"model.layers.4.self_attn.q_proj",
|
43 |
+
"model.layers.23.self_attn_text.o_proj",
|
44 |
+
"model.layers.12.self_attn.k_proj",
|
45 |
+
"model.layers.17.self_attn_text.v_proj",
|
46 |
+
"model.layers.25.self_attn.k_proj",
|
47 |
+
"model.layers.0.self_attn.k_proj",
|
48 |
+
"model.layers.23.self_attn.v_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
"model.layers.20.self_attn.k_proj",
|
50 |
+
"model.layers.13.self_attn_text.v_proj",
|
51 |
+
"model.layers.9.self_attn.o_proj",
|
52 |
+
"model.layers.21.self_attn.v_proj",
|
53 |
+
"model.layers.11.self_attn.o_proj",
|
54 |
+
"model.layers.22.self_attn.q_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"model.layers.19.mlp.gate_proj",
|
56 |
+
"model.layers.4.mlp.gate_proj",
|
|
|
|
|
|
|
57 |
"model.layers.18.self_attn.k_proj",
|
58 |
+
"model.layers.23.self_attn_text.q_proj",
|
59 |
+
"model.layers.23.self_attn.k_proj",
|
60 |
+
"model.layers.24.self_attn.k_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"model.layers.13.self_attn_text.q_proj",
|
62 |
+
"model.layers.2.self_attn.q_proj",
|
63 |
+
"model.layers.3.self_attn_text.q_proj",
|
64 |
+
"model.layers.0.self_attn_text.k_proj",
|
65 |
+
"model.layers.22.mlp.gate_proj",
|
66 |
+
"model.layers.5.mlp.down_proj",
|
67 |
+
"model.layers.11.self_attn_text.q_proj",
|
68 |
+
"model.layers.2.self_attn_text.k_proj",
|
69 |
+
"model.layers.14.self_attn_text.q_proj",
|
70 |
+
"model.layers.9.mlp.up_proj",
|
71 |
+
"model.layers.19.self_attn_text.o_proj",
|
72 |
+
"model.layers.2.self_attn_text.o_proj",
|
73 |
+
"model.layers.3.self_attn_text.v_proj",
|
74 |
+
"model.layers.27.self_attn.k_proj",
|
75 |
+
"model.layers.27.self_attn_text.v_proj",
|
76 |
+
"model.layers.7.self_attn_text.q_proj",
|
77 |
+
"model.layers.1.mlp.up_proj",
|
78 |
"model.layers.11.self_attn.q_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
"model.layers.8.self_attn_text.v_proj",
|
80 |
+
"model.layers.19.self_attn.k_proj",
|
81 |
+
"model.layers.24.self_attn.q_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
"model.layers.12.self_attn_text.q_proj",
|
83 |
+
"model.layers.27.mlp.down_proj",
|
84 |
+
"model.layers.12.self_attn_text.k_proj",
|
85 |
+
"model.layers.11.self_attn.v_proj",
|
86 |
+
"model.layers.13.mlp.up_proj",
|
87 |
+
"model.layers.8.self_attn_text.q_proj",
|
88 |
+
"model.layers.22.self_attn.v_proj",
|
89 |
+
"model.layers.14.self_attn.o_proj",
|
90 |
+
"model.layers.23.self_attn.q_proj",
|
91 |
+
"model.layers.23.self_attn.o_proj",
|
92 |
"model.layers.14.mlp.down_proj",
|
93 |
+
"model.layers.16.mlp.down_proj",
|
94 |
+
"model.layers.10.self_attn.q_proj",
|
95 |
+
"model.layers.27.mlp.up_proj",
|
96 |
+
"model.layers.17.mlp.up_proj",
|
97 |
+
"model.layers.16.self_attn_text.v_proj",
|
98 |
+
"model.layers.4.mlp.down_proj",
|
99 |
+
"model.layers.22.mlp.down_proj",
|
100 |
+
"model.layers.0.self_attn.q_proj",
|
101 |
+
"model.layers.27.mlp.gate_proj",
|
102 |
+
"model.layers.9.mlp.gate_proj",
|
103 |
+
"model.layers.22.mlp.up_proj",
|
104 |
+
"model.layers.2.self_attn.v_proj",
|
105 |
+
"model.layers.14.self_attn.q_proj",
|
106 |
+
"model.layers.7.mlp.gate_proj",
|
107 |
+
"model.layers.21.self_attn.k_proj",
|
108 |
+
"model.layers.13.self_attn.q_proj",
|
109 |
+
"model.layers.11.mlp.down_proj",
|
110 |
+
"model.layers.6.self_attn_text.k_proj",
|
111 |
+
"model.layers.16.self_attn_text.o_proj",
|
112 |
+
"model.layers.4.self_attn_text.k_proj",
|
113 |
+
"model.layers.24.self_attn_text.v_proj",
|
114 |
+
"model.layers.16.mlp.up_proj",
|
115 |
+
"model.layers.13.self_attn.k_proj",
|
116 |
+
"model.layers.5.self_attn_text.v_proj",
|
117 |
+
"model.layers.22.self_attn_text.k_proj",
|
118 |
+
"model.layers.15.self_attn_text.q_proj",
|
119 |
+
"model.layers.8.self_attn.q_proj",
|
120 |
+
"model.layers.25.self_attn_text.v_proj",
|
121 |
+
"model.layers.8.self_attn.o_proj",
|
122 |
+
"model.layers.27.self_attn_text.k_proj",
|
123 |
+
"model.layers.21.mlp.up_proj",
|
124 |
"model.layers.9.self_attn.v_proj",
|
125 |
+
"model.layers.5.mlp.up_proj",
|
126 |
+
"model.layers.11.self_attn_text.k_proj",
|
127 |
+
"model.layers.18.mlp.up_proj",
|
128 |
"model.layers.17.self_attn.q_proj",
|
129 |
+
"model.layers.25.mlp.down_proj",
|
130 |
+
"model.layers.16.self_attn.o_proj",
|
131 |
+
"model.layers.15.self_attn.o_proj",
|
132 |
+
"model.layers.1.mlp.down_proj",
|
133 |
+
"model.layers.24.mlp.gate_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
"model.layers.10.self_attn_text.q_proj",
|
135 |
+
"model.layers.7.self_attn.k_proj",
|
136 |
+
"model.layers.7.mlp.down_proj",
|
137 |
+
"model.layers.17.self_attn_text.k_proj",
|
138 |
+
"model.layers.6.mlp.down_proj",
|
139 |
+
"model.layers.10.self_attn.k_proj",
|
140 |
+
"model.layers.17.self_attn.o_proj",
|
141 |
+
"model.layers.20.self_attn_text.q_proj",
|
142 |
+
"model.layers.26.self_attn_text.o_proj",
|
143 |
+
"model.layers.10.self_attn.v_proj",
|
144 |
+
"model.layers.20.self_attn_text.k_proj",
|
145 |
+
"model.layers.19.self_attn.o_proj",
|
146 |
+
"model.layers.8.mlp.down_proj",
|
147 |
+
"model.layers.0.mlp.down_proj",
|
148 |
"model.layers.13.self_attn_text.o_proj",
|
149 |
+
"model.layers.18.self_attn.q_proj",
|
150 |
+
"model.layers.13.mlp.gate_proj",
|
151 |
+
"model.layers.11.self_attn_text.o_proj",
|
152 |
+
"model.layers.12.mlp.gate_proj",
|
153 |
+
"model.layers.21.mlp.gate_proj",
|
154 |
+
"model.layers.3.mlp.up_proj",
|
155 |
+
"model.layers.5.self_attn.v_proj",
|
156 |
+
"model.layers.15.self_attn.v_proj",
|
157 |
+
"model.layers.24.self_attn_text.k_proj",
|
158 |
+
"model.layers.0.self_attn_text.q_proj",
|
159 |
+
"model.layers.13.self_attn.o_proj",
|
160 |
+
"model.layers.24.mlp.down_proj",
|
161 |
+
"model.layers.26.mlp.down_proj",
|
162 |
+
"model.layers.19.mlp.up_proj",
|
163 |
+
"model.layers.17.self_attn.v_proj",
|
164 |
+
"model.layers.1.self_attn.q_proj",
|
165 |
+
"model.layers.5.self_attn_text.q_proj",
|
166 |
+
"model.layers.4.self_attn_text.q_proj",
|
167 |
+
"model.layers.18.mlp.gate_proj",
|
168 |
+
"model.layers.26.self_attn_text.v_proj",
|
169 |
+
"model.layers.8.mlp.gate_proj",
|
170 |
+
"model.layers.23.self_attn_text.v_proj",
|
171 |
+
"model.layers.26.self_attn.v_proj",
|
172 |
+
"model.layers.21.self_attn_text.q_proj",
|
173 |
+
"model.layers.26.self_attn.k_proj",
|
174 |
"model.layers.6.mlp.gate_proj",
|
175 |
+
"model.layers.7.self_attn.o_proj",
|
176 |
+
"model.layers.26.self_attn.q_proj",
|
177 |
+
"model.layers.24.self_attn_text.o_proj",
|
178 |
+
"model.layers.17.self_attn.k_proj",
|
179 |
+
"model.layers.7.self_attn_text.o_proj",
|
180 |
+
"model.layers.24.self_attn_text.q_proj",
|
181 |
+
"model.layers.22.self_attn_text.q_proj",
|
182 |
+
"model.layers.7.self_attn.q_proj",
|
183 |
+
"model.layers.20.self_attn.v_proj",
|
184 |
"model.layers.10.mlp.up_proj",
|
185 |
+
"model.layers.19.self_attn_text.k_proj",
|
186 |
+
"model.layers.14.self_attn_text.o_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
"model.layers.22.self_attn_text.v_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
"model.layers.17.mlp.down_proj",
|
189 |
+
"model.layers.16.mlp.gate_proj",
|
190 |
+
"model.layers.8.self_attn.v_proj",
|
191 |
+
"model.layers.4.self_attn_text.o_proj",
|
192 |
+
"model.layers.26.mlp.gate_proj",
|
193 |
+
"model.layers.1.mlp.gate_proj",
|
|
|
|
|
|
|
|
|
194 |
"model.layers.18.self_attn_text.v_proj",
|
195 |
+
"model.layers.25.self_attn_text.k_proj",
|
196 |
+
"model.layers.0.mlp.gate_proj",
|
197 |
+
"model.layers.1.self_attn_text.k_proj",
|
198 |
+
"model.layers.18.self_attn_text.o_proj",
|
199 |
+
"model.layers.24.mlp.up_proj",
|
200 |
+
"model.layers.26.mlp.up_proj",
|
201 |
+
"model.layers.21.self_attn.q_proj",
|
|
|
202 |
"model.layers.22.self_attn.o_proj",
|
203 |
+
"model.layers.19.self_attn.q_proj",
|
204 |
+
"model.layers.7.mlp.up_proj",
|
205 |
+
"model.layers.16.self_attn.v_proj",
|
206 |
+
"model.layers.8.mlp.up_proj",
|
207 |
+
"model.layers.10.self_attn.o_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
"model.layers.21.self_attn_text.k_proj",
|
209 |
+
"model.layers.5.mlp.gate_proj",
|
210 |
+
"model.layers.12.mlp.up_proj",
|
211 |
+
"model.layers.25.mlp.gate_proj",
|
212 |
+
"model.layers.21.self_attn.o_proj",
|
213 |
+
"model.layers.15.self_attn_text.v_proj",
|
|
|
214 |
"model.layers.15.self_attn.q_proj",
|
215 |
+
"model.layers.5.self_attn_text.o_proj",
|
216 |
+
"model.layers.12.self_attn.v_proj",
|
217 |
+
"model.layers.1.self_attn.k_proj",
|
218 |
+
"model.layers.0.self_attn_text.o_proj",
|
219 |
+
"model.layers.25.self_attn.o_proj",
|
220 |
+
"model.layers.20.self_attn_text.o_proj",
|
221 |
+
"model.layers.2.self_attn_text.q_proj",
|
222 |
+
"model.layers.6.self_attn.q_proj",
|
223 |
+
"model.layers.12.self_attn_text.v_proj",
|
224 |
+
"model.layers.18.mlp.down_proj",
|
225 |
+
"model.layers.9.self_attn.q_proj",
|
226 |
+
"model.layers.9.self_attn_text.v_proj",
|
227 |
+
"model.layers.25.mlp.up_proj",
|
228 |
+
"model.layers.16.self_attn_text.k_proj",
|
229 |
+
"model.layers.12.self_attn_text.o_proj",
|
230 |
+
"model.layers.18.self_attn_text.q_proj",
|
231 |
+
"model.layers.13.mlp.down_proj",
|
232 |
+
"model.layers.19.mlp.down_proj",
|
233 |
+
"model.layers.17.self_attn_text.o_proj",
|
234 |
+
"model.layers.27.self_attn.v_proj",
|
235 |
+
"model.layers.12.self_attn.o_proj",
|
236 |
+
"model.layers.1.self_attn_text.o_proj",
|
237 |
+
"model.layers.13.self_attn.v_proj",
|
238 |
+
"model.layers.23.mlp.up_proj",
|
239 |
+
"model.layers.15.self_attn_text.k_proj",
|
240 |
+
"model.layers.5.self_attn.o_proj",
|
241 |
"model.layers.0.self_attn.o_proj",
|
242 |
+
"model.layers.13.self_attn_text.k_proj",
|
243 |
+
"model.layers.21.self_attn_text.o_proj",
|
244 |
+
"model.layers.3.self_attn.v_proj",
|
245 |
+
"model.layers.6.self_attn.o_proj",
|
246 |
+
"model.layers.4.self_attn.k_proj",
|
247 |
+
"model.layers.1.self_attn.v_proj",
|
248 |
"model.layers.4.self_attn_text.v_proj",
|
249 |
+
"model.layers.5.self_attn_text.k_proj",
|
250 |
+
"model.layers.14.self_attn_text.v_proj",
|
251 |
+
"model.layers.19.self_attn.v_proj",
|
252 |
+
"model.layers.12.mlp.down_proj",
|
253 |
+
"model.layers.14.mlp.up_proj",
|
254 |
+
"model.layers.10.self_attn_text.v_proj",
|
255 |
+
"model.layers.2.mlp.down_proj",
|
256 |
+
"model.layers.3.mlp.down_proj",
|
257 |
"model.layers.14.self_attn_text.k_proj",
|
258 |
+
"model.layers.23.self_attn_text.k_proj",
|
259 |
+
"model.layers.23.mlp.down_proj",
|
260 |
+
"model.layers.25.self_attn_text.q_proj",
|
261 |
+
"model.layers.7.self_attn.v_proj",
|
262 |
+
"model.layers.10.self_attn_text.k_proj",
|
263 |
+
"model.layers.23.mlp.gate_proj",
|
264 |
+
"model.layers.8.self_attn_text.k_proj",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
"model.layers.19.self_attn_text.q_proj",
|
266 |
+
"model.layers.15.self_attn_text.o_proj",
|
267 |
+
"model.layers.3.self_attn_text.o_proj",
|
268 |
+
"model.layers.12.self_attn.q_proj",
|
269 |
+
"model.layers.14.self_attn.k_proj",
|
270 |
+
"model.layers.18.self_attn.o_proj",
|
271 |
+
"model.layers.0.mlp.up_proj",
|
272 |
+
"model.layers.4.self_attn.v_proj",
|
273 |
+
"model.layers.10.mlp.down_proj",
|
274 |
+
"model.layers.25.self_attn.v_proj",
|
275 |
+
"model.layers.21.self_attn_text.v_proj",
|
276 |
+
"model.layers.15.self_attn.k_proj",
|
277 |
+
"model.layers.21.mlp.down_proj",
|
278 |
+
"model.layers.27.self_attn_text.q_proj",
|
279 |
+
"model.layers.15.mlp.down_proj",
|
280 |
+
"model.layers.24.self_attn.v_proj",
|
281 |
+
"model.layers.15.mlp.up_proj",
|
282 |
+
"model.layers.9.self_attn.k_proj",
|
283 |
+
"model.layers.2.self_attn_text.v_proj",
|
284 |
+
"model.layers.3.self_attn.q_proj",
|
285 |
+
"model.layers.27.self_attn_text.o_proj",
|
286 |
+
"model.layers.8.self_attn_text.o_proj",
|
287 |
+
"model.layers.11.self_attn_text.v_proj",
|
288 |
+
"model.layers.18.self_attn.v_proj",
|
289 |
+
"model.layers.6.self_attn_text.o_proj",
|
290 |
+
"model.layers.1.self_attn_text.q_proj",
|
291 |
+
"model.layers.14.mlp.gate_proj",
|
292 |
+
"model.layers.6.self_attn_text.v_proj",
|
293 |
+
"model.layers.4.mlp.up_proj",
|
294 |
+
"model.layers.9.self_attn_text.o_proj",
|
295 |
"model.layers.20.self_attn_text.v_proj",
|
296 |
+
"model.layers.9.self_attn_text.q_proj",
|
297 |
+
"model.layers.14.self_attn.v_proj",
|
298 |
+
"model.layers.27.self_attn.o_proj",
|
299 |
+
"model.layers.10.mlp.gate_proj",
|
300 |
+
"model.layers.26.self_attn.o_proj",
|
301 |
+
"model.layers.25.self_attn_text.o_proj",
|
302 |
+
"model.layers.9.self_attn_text.k_proj",
|
303 |
+
"model.layers.5.self_attn.q_proj",
|
304 |
+
"model.layers.3.mlp.gate_proj",
|
305 |
+
"model.layers.15.mlp.gate_proj",
|
306 |
"model.layers.16.self_attn.k_proj",
|
307 |
+
"model.layers.2.mlp.gate_proj",
|
308 |
+
"model.layers.2.mlp.up_proj",
|
309 |
+
"model.layers.26.self_attn_text.q_proj",
|
310 |
+
"model.layers.17.self_attn_text.q_proj",
|
311 |
"model.layers.24.self_attn.o_proj",
|
312 |
+
"model.layers.0.self_attn.v_proj",
|
313 |
+
"model.layers.7.self_attn_text.v_proj",
|
314 |
+
"model.layers.20.mlp.down_proj",
|
315 |
+
"model.layers.20.mlp.gate_proj",
|
316 |
+
"model.layers.9.mlp.down_proj",
|
317 |
+
"model.layers.16.self_attn_text.q_proj",
|
318 |
+
"model.layers.11.self_attn.k_proj",
|
319 |
+
"model.layers.3.self_attn.o_proj",
|
320 |
+
"model.layers.19.self_attn_text.v_proj",
|
321 |
+
"model.layers.1.self_attn_text.v_proj",
|
322 |
+
"model.layers.11.mlp.gate_proj",
|
323 |
+
"model.layers.11.mlp.up_proj",
|
324 |
+
"model.layers.22.self_attn_text.o_proj",
|
325 |
+
"model.layers.26.self_attn_text.k_proj",
|
326 |
+
"model.layers.6.mlp.up_proj",
|
327 |
+
"model.layers.4.self_attn.o_proj",
|
328 |
+
"model.layers.27.self_attn.q_proj",
|
329 |
+
"model.layers.20.mlp.up_proj",
|
330 |
+
"model.layers.6.self_attn_text.q_proj"
|
331 |
],
|
332 |
"task_type": "CAUSAL_LM",
|
333 |
"use_dora": false,
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a2e986c7024b9ca65e4e32ac4d78394410d178075d7900e4970cc747eed3bc2
|
3 |
+
size 91374880
|
all_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos": 1.
|
4 |
-
"train_loss":
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second": 0.
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 14.544,
|
3 |
+
"total_flos": 1.565274744469586e+17,
|
4 |
+
"train_loss": 1.4569768874875961,
|
5 |
+
"train_runtime": 22995.3507,
|
6 |
+
"train_samples_per_second": 0.652,
|
7 |
+
"train_steps_per_second": 0.02
|
8 |
}
|
checkpoint-465/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: saim1212/penguin2
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.12.0
|
checkpoint-465/adapter_config.json
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "saim1212/penguin2",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"model.layers.6.self_attn.v_proj",
|
24 |
+
"model.layers.3.self_attn.k_proj",
|
25 |
+
"model.layers.5.self_attn.k_proj",
|
26 |
+
"model.layers.20.self_attn.o_proj",
|
27 |
+
"model.layers.2.self_attn.k_proj",
|
28 |
+
"model.layers.7.self_attn_text.k_proj",
|
29 |
+
"model.layers.6.self_attn.k_proj",
|
30 |
+
"model.layers.20.self_attn.q_proj",
|
31 |
+
"model.layers.25.self_attn.q_proj",
|
32 |
+
"model.layers.1.self_attn.o_proj",
|
33 |
+
"model.layers.22.self_attn.k_proj",
|
34 |
+
"model.layers.8.self_attn.k_proj",
|
35 |
+
"model.layers.18.self_attn_text.k_proj",
|
36 |
+
"model.layers.10.self_attn_text.o_proj",
|
37 |
+
"model.layers.17.mlp.gate_proj",
|
38 |
+
"model.layers.2.self_attn.o_proj",
|
39 |
+
"model.layers.3.self_attn_text.k_proj",
|
40 |
+
"model.layers.0.self_attn_text.v_proj",
|
41 |
+
"model.layers.16.self_attn.q_proj",
|
42 |
+
"model.layers.4.self_attn.q_proj",
|
43 |
+
"model.layers.23.self_attn_text.o_proj",
|
44 |
+
"model.layers.12.self_attn.k_proj",
|
45 |
+
"model.layers.17.self_attn_text.v_proj",
|
46 |
+
"model.layers.25.self_attn.k_proj",
|
47 |
+
"model.layers.0.self_attn.k_proj",
|
48 |
+
"model.layers.23.self_attn.v_proj",
|
49 |
+
"model.layers.20.self_attn.k_proj",
|
50 |
+
"model.layers.13.self_attn_text.v_proj",
|
51 |
+
"model.layers.9.self_attn.o_proj",
|
52 |
+
"model.layers.21.self_attn.v_proj",
|
53 |
+
"model.layers.11.self_attn.o_proj",
|
54 |
+
"model.layers.22.self_attn.q_proj",
|
55 |
+
"model.layers.19.mlp.gate_proj",
|
56 |
+
"model.layers.4.mlp.gate_proj",
|
57 |
+
"model.layers.18.self_attn.k_proj",
|
58 |
+
"model.layers.23.self_attn_text.q_proj",
|
59 |
+
"model.layers.23.self_attn.k_proj",
|
60 |
+
"model.layers.24.self_attn.k_proj",
|
61 |
+
"model.layers.13.self_attn_text.q_proj",
|
62 |
+
"model.layers.2.self_attn.q_proj",
|
63 |
+
"model.layers.3.self_attn_text.q_proj",
|
64 |
+
"model.layers.0.self_attn_text.k_proj",
|
65 |
+
"model.layers.22.mlp.gate_proj",
|
66 |
+
"model.layers.5.mlp.down_proj",
|
67 |
+
"model.layers.11.self_attn_text.q_proj",
|
68 |
+
"model.layers.2.self_attn_text.k_proj",
|
69 |
+
"model.layers.14.self_attn_text.q_proj",
|
70 |
+
"model.layers.9.mlp.up_proj",
|
71 |
+
"model.layers.19.self_attn_text.o_proj",
|
72 |
+
"model.layers.2.self_attn_text.o_proj",
|
73 |
+
"model.layers.3.self_attn_text.v_proj",
|
74 |
+
"model.layers.27.self_attn.k_proj",
|
75 |
+
"model.layers.27.self_attn_text.v_proj",
|
76 |
+
"model.layers.7.self_attn_text.q_proj",
|
77 |
+
"model.layers.1.mlp.up_proj",
|
78 |
+
"model.layers.11.self_attn.q_proj",
|
79 |
+
"model.layers.8.self_attn_text.v_proj",
|
80 |
+
"model.layers.19.self_attn.k_proj",
|
81 |
+
"model.layers.24.self_attn.q_proj",
|
82 |
+
"model.layers.12.self_attn_text.q_proj",
|
83 |
+
"model.layers.27.mlp.down_proj",
|
84 |
+
"model.layers.12.self_attn_text.k_proj",
|
85 |
+
"model.layers.11.self_attn.v_proj",
|
86 |
+
"model.layers.13.mlp.up_proj",
|
87 |
+
"model.layers.8.self_attn_text.q_proj",
|
88 |
+
"model.layers.22.self_attn.v_proj",
|
89 |
+
"model.layers.14.self_attn.o_proj",
|
90 |
+
"model.layers.23.self_attn.q_proj",
|
91 |
+
"model.layers.23.self_attn.o_proj",
|
92 |
+
"model.layers.14.mlp.down_proj",
|
93 |
+
"model.layers.16.mlp.down_proj",
|
94 |
+
"model.layers.10.self_attn.q_proj",
|
95 |
+
"model.layers.27.mlp.up_proj",
|
96 |
+
"model.layers.17.mlp.up_proj",
|
97 |
+
"model.layers.16.self_attn_text.v_proj",
|
98 |
+
"model.layers.4.mlp.down_proj",
|
99 |
+
"model.layers.22.mlp.down_proj",
|
100 |
+
"model.layers.0.self_attn.q_proj",
|
101 |
+
"model.layers.27.mlp.gate_proj",
|
102 |
+
"model.layers.9.mlp.gate_proj",
|
103 |
+
"model.layers.22.mlp.up_proj",
|
104 |
+
"model.layers.2.self_attn.v_proj",
|
105 |
+
"model.layers.14.self_attn.q_proj",
|
106 |
+
"model.layers.7.mlp.gate_proj",
|
107 |
+
"model.layers.21.self_attn.k_proj",
|
108 |
+
"model.layers.13.self_attn.q_proj",
|
109 |
+
"model.layers.11.mlp.down_proj",
|
110 |
+
"model.layers.6.self_attn_text.k_proj",
|
111 |
+
"model.layers.16.self_attn_text.o_proj",
|
112 |
+
"model.layers.4.self_attn_text.k_proj",
|
113 |
+
"model.layers.24.self_attn_text.v_proj",
|
114 |
+
"model.layers.16.mlp.up_proj",
|
115 |
+
"model.layers.13.self_attn.k_proj",
|
116 |
+
"model.layers.5.self_attn_text.v_proj",
|
117 |
+
"model.layers.22.self_attn_text.k_proj",
|
118 |
+
"model.layers.15.self_attn_text.q_proj",
|
119 |
+
"model.layers.8.self_attn.q_proj",
|
120 |
+
"model.layers.25.self_attn_text.v_proj",
|
121 |
+
"model.layers.8.self_attn.o_proj",
|
122 |
+
"model.layers.27.self_attn_text.k_proj",
|
123 |
+
"model.layers.21.mlp.up_proj",
|
124 |
+
"model.layers.9.self_attn.v_proj",
|
125 |
+
"model.layers.5.mlp.up_proj",
|
126 |
+
"model.layers.11.self_attn_text.k_proj",
|
127 |
+
"model.layers.18.mlp.up_proj",
|
128 |
+
"model.layers.17.self_attn.q_proj",
|
129 |
+
"model.layers.25.mlp.down_proj",
|
130 |
+
"model.layers.16.self_attn.o_proj",
|
131 |
+
"model.layers.15.self_attn.o_proj",
|
132 |
+
"model.layers.1.mlp.down_proj",
|
133 |
+
"model.layers.24.mlp.gate_proj",
|
134 |
+
"model.layers.10.self_attn_text.q_proj",
|
135 |
+
"model.layers.7.self_attn.k_proj",
|
136 |
+
"model.layers.7.mlp.down_proj",
|
137 |
+
"model.layers.17.self_attn_text.k_proj",
|
138 |
+
"model.layers.6.mlp.down_proj",
|
139 |
+
"model.layers.10.self_attn.k_proj",
|
140 |
+
"model.layers.17.self_attn.o_proj",
|
141 |
+
"model.layers.20.self_attn_text.q_proj",
|
142 |
+
"model.layers.26.self_attn_text.o_proj",
|
143 |
+
"model.layers.10.self_attn.v_proj",
|
144 |
+
"model.layers.20.self_attn_text.k_proj",
|
145 |
+
"model.layers.19.self_attn.o_proj",
|
146 |
+
"model.layers.8.mlp.down_proj",
|
147 |
+
"model.layers.0.mlp.down_proj",
|
148 |
+
"model.layers.13.self_attn_text.o_proj",
|
149 |
+
"model.layers.18.self_attn.q_proj",
|
150 |
+
"model.layers.13.mlp.gate_proj",
|
151 |
+
"model.layers.11.self_attn_text.o_proj",
|
152 |
+
"model.layers.12.mlp.gate_proj",
|
153 |
+
"model.layers.21.mlp.gate_proj",
|
154 |
+
"model.layers.3.mlp.up_proj",
|
155 |
+
"model.layers.5.self_attn.v_proj",
|
156 |
+
"model.layers.15.self_attn.v_proj",
|
157 |
+
"model.layers.24.self_attn_text.k_proj",
|
158 |
+
"model.layers.0.self_attn_text.q_proj",
|
159 |
+
"model.layers.13.self_attn.o_proj",
|
160 |
+
"model.layers.24.mlp.down_proj",
|
161 |
+
"model.layers.26.mlp.down_proj",
|
162 |
+
"model.layers.19.mlp.up_proj",
|
163 |
+
"model.layers.17.self_attn.v_proj",
|
164 |
+
"model.layers.1.self_attn.q_proj",
|
165 |
+
"model.layers.5.self_attn_text.q_proj",
|
166 |
+
"model.layers.4.self_attn_text.q_proj",
|
167 |
+
"model.layers.18.mlp.gate_proj",
|
168 |
+
"model.layers.26.self_attn_text.v_proj",
|
169 |
+
"model.layers.8.mlp.gate_proj",
|
170 |
+
"model.layers.23.self_attn_text.v_proj",
|
171 |
+
"model.layers.26.self_attn.v_proj",
|
172 |
+
"model.layers.21.self_attn_text.q_proj",
|
173 |
+
"model.layers.26.self_attn.k_proj",
|
174 |
+
"model.layers.6.mlp.gate_proj",
|
175 |
+
"model.layers.7.self_attn.o_proj",
|
176 |
+
"model.layers.26.self_attn.q_proj",
|
177 |
+
"model.layers.24.self_attn_text.o_proj",
|
178 |
+
"model.layers.17.self_attn.k_proj",
|
179 |
+
"model.layers.7.self_attn_text.o_proj",
|
180 |
+
"model.layers.24.self_attn_text.q_proj",
|
181 |
+
"model.layers.22.self_attn_text.q_proj",
|
182 |
+
"model.layers.7.self_attn.q_proj",
|
183 |
+
"model.layers.20.self_attn.v_proj",
|
184 |
+
"model.layers.10.mlp.up_proj",
|
185 |
+
"model.layers.19.self_attn_text.k_proj",
|
186 |
+
"model.layers.14.self_attn_text.o_proj",
|
187 |
+
"model.layers.22.self_attn_text.v_proj",
|
188 |
+
"model.layers.17.mlp.down_proj",
|
189 |
+
"model.layers.16.mlp.gate_proj",
|
190 |
+
"model.layers.8.self_attn.v_proj",
|
191 |
+
"model.layers.4.self_attn_text.o_proj",
|
192 |
+
"model.layers.26.mlp.gate_proj",
|
193 |
+
"model.layers.1.mlp.gate_proj",
|
194 |
+
"model.layers.18.self_attn_text.v_proj",
|
195 |
+
"model.layers.25.self_attn_text.k_proj",
|
196 |
+
"model.layers.0.mlp.gate_proj",
|
197 |
+
"model.layers.1.self_attn_text.k_proj",
|
198 |
+
"model.layers.18.self_attn_text.o_proj",
|
199 |
+
"model.layers.24.mlp.up_proj",
|
200 |
+
"model.layers.26.mlp.up_proj",
|
201 |
+
"model.layers.21.self_attn.q_proj",
|
202 |
+
"model.layers.22.self_attn.o_proj",
|
203 |
+
"model.layers.19.self_attn.q_proj",
|
204 |
+
"model.layers.7.mlp.up_proj",
|
205 |
+
"model.layers.16.self_attn.v_proj",
|
206 |
+
"model.layers.8.mlp.up_proj",
|
207 |
+
"model.layers.10.self_attn.o_proj",
|
208 |
+
"model.layers.21.self_attn_text.k_proj",
|
209 |
+
"model.layers.5.mlp.gate_proj",
|
210 |
+
"model.layers.12.mlp.up_proj",
|
211 |
+
"model.layers.25.mlp.gate_proj",
|
212 |
+
"model.layers.21.self_attn.o_proj",
|
213 |
+
"model.layers.15.self_attn_text.v_proj",
|
214 |
+
"model.layers.15.self_attn.q_proj",
|
215 |
+
"model.layers.5.self_attn_text.o_proj",
|
216 |
+
"model.layers.12.self_attn.v_proj",
|
217 |
+
"model.layers.1.self_attn.k_proj",
|
218 |
+
"model.layers.0.self_attn_text.o_proj",
|
219 |
+
"model.layers.25.self_attn.o_proj",
|
220 |
+
"model.layers.20.self_attn_text.o_proj",
|
221 |
+
"model.layers.2.self_attn_text.q_proj",
|
222 |
+
"model.layers.6.self_attn.q_proj",
|
223 |
+
"model.layers.12.self_attn_text.v_proj",
|
224 |
+
"model.layers.18.mlp.down_proj",
|
225 |
+
"model.layers.9.self_attn.q_proj",
|
226 |
+
"model.layers.9.self_attn_text.v_proj",
|
227 |
+
"model.layers.25.mlp.up_proj",
|
228 |
+
"model.layers.16.self_attn_text.k_proj",
|
229 |
+
"model.layers.12.self_attn_text.o_proj",
|
230 |
+
"model.layers.18.self_attn_text.q_proj",
|
231 |
+
"model.layers.13.mlp.down_proj",
|
232 |
+
"model.layers.19.mlp.down_proj",
|
233 |
+
"model.layers.17.self_attn_text.o_proj",
|
234 |
+
"model.layers.27.self_attn.v_proj",
|
235 |
+
"model.layers.12.self_attn.o_proj",
|
236 |
+
"model.layers.1.self_attn_text.o_proj",
|
237 |
+
"model.layers.13.self_attn.v_proj",
|
238 |
+
"model.layers.23.mlp.up_proj",
|
239 |
+
"model.layers.15.self_attn_text.k_proj",
|
240 |
+
"model.layers.5.self_attn.o_proj",
|
241 |
+
"model.layers.0.self_attn.o_proj",
|
242 |
+
"model.layers.13.self_attn_text.k_proj",
|
243 |
+
"model.layers.21.self_attn_text.o_proj",
|
244 |
+
"model.layers.3.self_attn.v_proj",
|
245 |
+
"model.layers.6.self_attn.o_proj",
|
246 |
+
"model.layers.4.self_attn.k_proj",
|
247 |
+
"model.layers.1.self_attn.v_proj",
|
248 |
+
"model.layers.4.self_attn_text.v_proj",
|
249 |
+
"model.layers.5.self_attn_text.k_proj",
|
250 |
+
"model.layers.14.self_attn_text.v_proj",
|
251 |
+
"model.layers.19.self_attn.v_proj",
|
252 |
+
"model.layers.12.mlp.down_proj",
|
253 |
+
"model.layers.14.mlp.up_proj",
|
254 |
+
"model.layers.10.self_attn_text.v_proj",
|
255 |
+
"model.layers.2.mlp.down_proj",
|
256 |
+
"model.layers.3.mlp.down_proj",
|
257 |
+
"model.layers.14.self_attn_text.k_proj",
|
258 |
+
"model.layers.23.self_attn_text.k_proj",
|
259 |
+
"model.layers.23.mlp.down_proj",
|
260 |
+
"model.layers.25.self_attn_text.q_proj",
|
261 |
+
"model.layers.7.self_attn.v_proj",
|
262 |
+
"model.layers.10.self_attn_text.k_proj",
|
263 |
+
"model.layers.23.mlp.gate_proj",
|
264 |
+
"model.layers.8.self_attn_text.k_proj",
|
265 |
+
"model.layers.19.self_attn_text.q_proj",
|
266 |
+
"model.layers.15.self_attn_text.o_proj",
|
267 |
+
"model.layers.3.self_attn_text.o_proj",
|
268 |
+
"model.layers.12.self_attn.q_proj",
|
269 |
+
"model.layers.14.self_attn.k_proj",
|
270 |
+
"model.layers.18.self_attn.o_proj",
|
271 |
+
"model.layers.0.mlp.up_proj",
|
272 |
+
"model.layers.4.self_attn.v_proj",
|
273 |
+
"model.layers.10.mlp.down_proj",
|
274 |
+
"model.layers.25.self_attn.v_proj",
|
275 |
+
"model.layers.21.self_attn_text.v_proj",
|
276 |
+
"model.layers.15.self_attn.k_proj",
|
277 |
+
"model.layers.21.mlp.down_proj",
|
278 |
+
"model.layers.27.self_attn_text.q_proj",
|
279 |
+
"model.layers.15.mlp.down_proj",
|
280 |
+
"model.layers.24.self_attn.v_proj",
|
281 |
+
"model.layers.15.mlp.up_proj",
|
282 |
+
"model.layers.9.self_attn.k_proj",
|
283 |
+
"model.layers.2.self_attn_text.v_proj",
|
284 |
+
"model.layers.3.self_attn.q_proj",
|
285 |
+
"model.layers.27.self_attn_text.o_proj",
|
286 |
+
"model.layers.8.self_attn_text.o_proj",
|
287 |
+
"model.layers.11.self_attn_text.v_proj",
|
288 |
+
"model.layers.18.self_attn.v_proj",
|
289 |
+
"model.layers.6.self_attn_text.o_proj",
|
290 |
+
"model.layers.1.self_attn_text.q_proj",
|
291 |
+
"model.layers.14.mlp.gate_proj",
|
292 |
+
"model.layers.6.self_attn_text.v_proj",
|
293 |
+
"model.layers.4.mlp.up_proj",
|
294 |
+
"model.layers.9.self_attn_text.o_proj",
|
295 |
+
"model.layers.20.self_attn_text.v_proj",
|
296 |
+
"model.layers.9.self_attn_text.q_proj",
|
297 |
+
"model.layers.14.self_attn.v_proj",
|
298 |
+
"model.layers.27.self_attn.o_proj",
|
299 |
+
"model.layers.10.mlp.gate_proj",
|
300 |
+
"model.layers.26.self_attn.o_proj",
|
301 |
+
"model.layers.25.self_attn_text.o_proj",
|
302 |
+
"model.layers.9.self_attn_text.k_proj",
|
303 |
+
"model.layers.5.self_attn.q_proj",
|
304 |
+
"model.layers.3.mlp.gate_proj",
|
305 |
+
"model.layers.15.mlp.gate_proj",
|
306 |
+
"model.layers.16.self_attn.k_proj",
|
307 |
+
"model.layers.2.mlp.gate_proj",
|
308 |
+
"model.layers.2.mlp.up_proj",
|
309 |
+
"model.layers.26.self_attn_text.q_proj",
|
310 |
+
"model.layers.17.self_attn_text.q_proj",
|
311 |
+
"model.layers.24.self_attn.o_proj",
|
312 |
+
"model.layers.0.self_attn.v_proj",
|
313 |
+
"model.layers.7.self_attn_text.v_proj",
|
314 |
+
"model.layers.20.mlp.down_proj",
|
315 |
+
"model.layers.20.mlp.gate_proj",
|
316 |
+
"model.layers.9.mlp.down_proj",
|
317 |
+
"model.layers.16.self_attn_text.q_proj",
|
318 |
+
"model.layers.11.self_attn.k_proj",
|
319 |
+
"model.layers.3.self_attn.o_proj",
|
320 |
+
"model.layers.19.self_attn_text.v_proj",
|
321 |
+
"model.layers.1.self_attn_text.v_proj",
|
322 |
+
"model.layers.11.mlp.gate_proj",
|
323 |
+
"model.layers.11.mlp.up_proj",
|
324 |
+
"model.layers.22.self_attn_text.o_proj",
|
325 |
+
"model.layers.26.self_attn_text.k_proj",
|
326 |
+
"model.layers.6.mlp.up_proj",
|
327 |
+
"model.layers.4.self_attn.o_proj",
|
328 |
+
"model.layers.27.self_attn.q_proj",
|
329 |
+
"model.layers.20.mlp.up_proj",
|
330 |
+
"model.layers.6.self_attn_text.q_proj"
|
331 |
+
],
|
332 |
+
"task_type": "CAUSAL_LM",
|
333 |
+
"use_dora": false,
|
334 |
+
"use_rslora": false
|
335 |
+
}
|
checkpoint-465/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a2e986c7024b9ca65e4e32ac4d78394410d178075d7900e4970cc747eed3bc2
|
3 |
+
size 91374880
|
checkpoint-465/added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
checkpoint-465/chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
checkpoint-465/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-465/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:755a9ee43ca8b7fb7c2076175b0b21246789d68e9304c029a8e85e64ea08958b
|
3 |
+
size 183102410
|
checkpoint-465/preprocessor_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"max_pixels": 12845056,
|
18 |
+
"merge_size": 2,
|
19 |
+
"min_pixels": 3136,
|
20 |
+
"patch_size": 14,
|
21 |
+
"processor_class": "Qwen2VLProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"longest_edge": 12845056,
|
26 |
+
"shortest_edge": 3136
|
27 |
+
},
|
28 |
+
"temporal_patch_size": 2
|
29 |
+
}
|
checkpoint-465/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b72d3ff0d9cef769a20852fa3473da68a2ad59950ff6438edf98c95328ba5c1
|
3 |
+
size 14512
|
checkpoint-465/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bff6047902e34b76f0af39d44c10111f1acce1cfd48509bfb6b92e02a5c71d0f
|
3 |
+
size 14512
|
checkpoint-465/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:818fc610f189557fd0fe4d05b146765e846d07979610f421578552c74e693478
|
3 |
+
size 988
|
checkpoint-465/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8cbb7526bfeebe005e6092a1c9c3f561b1a9f8e4976ac114e936a719f46ca5
|
3 |
+
size 1064
|
checkpoint-465/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-465/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
|
3 |
+
size 11420371
|
checkpoint-465/tokenizer_config.json
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"additional_special_tokens": [
|
118 |
+
"<|im_start|>",
|
119 |
+
"<|im_end|>",
|
120 |
+
"<|object_ref_start|>",
|
121 |
+
"<|object_ref_end|>",
|
122 |
+
"<|box_start|>",
|
123 |
+
"<|box_end|>",
|
124 |
+
"<|quad_start|>",
|
125 |
+
"<|quad_end|>",
|
126 |
+
"<|vision_start|>",
|
127 |
+
"<|vision_end|>",
|
128 |
+
"<|vision_pad|>",
|
129 |
+
"<|image_pad|>",
|
130 |
+
"<|video_pad|>"
|
131 |
+
],
|
132 |
+
"bos_token": null,
|
133 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
134 |
+
"clean_up_tokenization_spaces": false,
|
135 |
+
"eos_token": "<|im_end|>",
|
136 |
+
"errors": "replace",
|
137 |
+
"extra_special_tokens": {},
|
138 |
+
"max_length": null,
|
139 |
+
"model_max_length": 32768,
|
140 |
+
"pad_to_multiple_of": null,
|
141 |
+
"pad_token": "<|endoftext|>",
|
142 |
+
"pad_token_type_id": 0,
|
143 |
+
"padding_side": "right",
|
144 |
+
"processor_class": "Qwen2VLProcessor",
|
145 |
+
"split_special_tokens": false,
|
146 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
147 |
+
"unk_token": null
|
148 |
+
}
|
checkpoint-465/trainer_state.json
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 14.544,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 465,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.32,
|
13 |
+
"grad_norm": 72.67546081542969,
|
14 |
+
"learning_rate": 3.8297872340425535e-06,
|
15 |
+
"loss": 10.0348,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.64,
|
20 |
+
"grad_norm": 41.243839263916016,
|
21 |
+
"learning_rate": 8.085106382978723e-06,
|
22 |
+
"loss": 4.7312,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.96,
|
27 |
+
"grad_norm": 34.776241302490234,
|
28 |
+
"learning_rate": 1.2340425531914895e-05,
|
29 |
+
"loss": 3.4362,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 1.256,
|
34 |
+
"grad_norm": 12.210166931152344,
|
35 |
+
"learning_rate": 1.6595744680851064e-05,
|
36 |
+
"loss": 2.5739,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 1.576,
|
41 |
+
"grad_norm": 11.936144828796387,
|
42 |
+
"learning_rate": 1.9998870284726968e-05,
|
43 |
+
"loss": 2.4828,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 1.896,
|
48 |
+
"grad_norm": 5.305131912231445,
|
49 |
+
"learning_rate": 1.9959357045100764e-05,
|
50 |
+
"loss": 2.1904,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 2.192,
|
55 |
+
"grad_norm": 6.481784820556641,
|
56 |
+
"learning_rate": 1.9863613034027224e-05,
|
57 |
+
"loss": 1.893,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 2.512,
|
62 |
+
"grad_norm": 2.9933059215545654,
|
63 |
+
"learning_rate": 1.971217882451521e-05,
|
64 |
+
"loss": 1.9328,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 2.832,
|
69 |
+
"grad_norm": 5.0720906257629395,
|
70 |
+
"learning_rate": 1.9505909417784758e-05,
|
71 |
+
"loss": 1.8361,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 3.128,
|
76 |
+
"grad_norm": 4.453537940979004,
|
77 |
+
"learning_rate": 1.9245969415909464e-05,
|
78 |
+
"loss": 1.6677,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 3.448,
|
83 |
+
"grad_norm": 3.9254183769226074,
|
84 |
+
"learning_rate": 1.8933826446444933e-05,
|
85 |
+
"loss": 1.7492,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 3.768,
|
90 |
+
"grad_norm": 2.421752691268921,
|
91 |
+
"learning_rate": 1.8571242876167995e-05,
|
92 |
+
"loss": 1.6435,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 4.064,
|
97 |
+
"grad_norm": 3.5012094974517822,
|
98 |
+
"learning_rate": 1.8160265860711134e-05,
|
99 |
+
"loss": 1.478,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 4.384,
|
104 |
+
"grad_norm": 4.192974090576172,
|
105 |
+
"learning_rate": 1.770321578627213e-05,
|
106 |
+
"loss": 1.4807,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 4.704,
|
111 |
+
"grad_norm": 2.528031826019287,
|
112 |
+
"learning_rate": 1.7202673168657318e-05,
|
113 |
+
"loss": 1.375,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 5.0,
|
118 |
+
"grad_norm": 1.0680221319198608,
|
119 |
+
"learning_rate": 1.6661464083626734e-05,
|
120 |
+
"loss": 1.2751,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 5.32,
|
125 |
+
"grad_norm": 2.499868392944336,
|
126 |
+
"learning_rate": 1.6082644210801846e-05,
|
127 |
+
"loss": 1.2887,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 5.64,
|
132 |
+
"grad_norm": 2.785773754119873,
|
133 |
+
"learning_rate": 1.5469481581224274e-05,
|
134 |
+
"loss": 1.2852,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 5.96,
|
139 |
+
"grad_norm": 2.820884943008423,
|
140 |
+
"learning_rate": 1.4825438125973263e-05,
|
141 |
+
"loss": 1.2329,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 6.256,
|
146 |
+
"grad_norm": 2.5425021648406982,
|
147 |
+
"learning_rate": 1.4154150130018867e-05,
|
148 |
+
"loss": 1.1001,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 6.576,
|
153 |
+
"grad_norm": 2.7974514961242676,
|
154 |
+
"learning_rate": 1.3459407701668762e-05,
|
155 |
+
"loss": 1.1543,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 6.896,
|
160 |
+
"grad_norm": 2.438002586364746,
|
161 |
+
"learning_rate": 1.2745133373524855e-05,
|
162 |
+
"loss": 1.132,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 7.192,
|
167 |
+
"grad_norm": 2.9781107902526855,
|
168 |
+
"learning_rate": 1.2015359955769021e-05,
|
169 |
+
"loss": 1.0284,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 7.5120000000000005,
|
174 |
+
"grad_norm": 3.271495819091797,
|
175 |
+
"learning_rate": 1.127420776681905e-05,
|
176 |
+
"loss": 1.0392,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 7.832,
|
181 |
+
"grad_norm": 3.1173477172851562,
|
182 |
+
"learning_rate": 1.0525861369910877e-05,
|
183 |
+
"loss": 1.0436,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 8.128,
|
188 |
+
"grad_norm": 2.84490704536438,
|
189 |
+
"learning_rate": 9.77454594695308e-06,
|
190 |
+
"loss": 0.8973,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 8.448,
|
195 |
+
"grad_norm": 3.3770253658294678,
|
196 |
+
"learning_rate": 9.024503443047318e-06,
|
197 |
+
"loss": 0.9455,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 8.768,
|
202 |
+
"grad_norm": 3.168492317199707,
|
203 |
+
"learning_rate": 8.279968616363417e-06,
|
204 |
+
"loss": 0.9297,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 9.064,
|
209 |
+
"grad_norm": 3.5850722789764404,
|
210 |
+
"learning_rate": 7.545145128592009e-06,
|
211 |
+
"loss": 0.8414,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 9.384,
|
216 |
+
"grad_norm": 2.5484402179718018,
|
217 |
+
"learning_rate": 6.824181810968675e-06,
|
218 |
+
"loss": 0.8513,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 9.704,
|
223 |
+
"grad_norm": 3.354924201965332,
|
224 |
+
"learning_rate": 6.121149239872151e-06,
|
225 |
+
"loss": 0.8351,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 10.0,
|
230 |
+
"grad_norm": 1.4634054899215698,
|
231 |
+
"learning_rate": 5.440016754251364e-06,
|
232 |
+
"loss": 0.7886,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 10.32,
|
237 |
+
"grad_norm": 3.3187077045440674,
|
238 |
+
"learning_rate": 4.784630044641435e-06,
|
239 |
+
"loss": 0.7832,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 10.64,
|
244 |
+
"grad_norm": 2.827324390411377,
|
245 |
+
"learning_rate": 4.1586894403016576e-06,
|
246 |
+
"loss": 0.7555,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 10.96,
|
251 |
+
"grad_norm": 2.74627685546875,
|
252 |
+
"learning_rate": 3.565729017066729e-06,
|
253 |
+
"loss": 0.7529,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 11.256,
|
258 |
+
"grad_norm": 2.8250672817230225,
|
259 |
+
"learning_rate": 3.0090966438688774e-06,
|
260 |
+
"loss": 0.6507,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 11.576,
|
265 |
+
"grad_norm": 3.070279359817505,
|
266 |
+
"learning_rate": 2.491935080588658e-06,
|
267 |
+
"loss": 0.7048,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 11.896,
|
272 |
+
"grad_norm": 2.929745674133301,
|
273 |
+
"learning_rate": 2.01716423395644e-06,
|
274 |
+
"loss": 0.6911,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 12.192,
|
279 |
+
"grad_norm": 2.552579879760742,
|
280 |
+
"learning_rate": 1.587464671688187e-06,
|
281 |
+
"loss": 0.6039,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 12.512,
|
286 |
+
"grad_norm": 2.608180046081543,
|
287 |
+
"learning_rate": 1.2052624879351105e-06,
|
288 |
+
"loss": 0.6456,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 12.832,
|
293 |
+
"grad_norm": 2.6534199714660645,
|
294 |
+
"learning_rate": 8.727156054972374e-07,
|
295 |
+
"loss": 0.6479,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 13.128,
|
300 |
+
"grad_norm": 2.4939088821411133,
|
301 |
+
"learning_rate": 5.917015921389569e-07,
|
302 |
+
"loss": 0.6013,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 13.448,
|
307 |
+
"grad_norm": 2.7369675636291504,
|
308 |
+
"learning_rate": 3.638070597958665e-07,
|
309 |
+
"loss": 0.6168,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 13.768,
|
314 |
+
"grad_norm": 2.4181711673736572,
|
315 |
+
"learning_rate": 1.903187065253076e-07,
|
316 |
+
"loss": 0.6093,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 14.064,
|
321 |
+
"grad_norm": 2.7222864627838135,
|
322 |
+
"learning_rate": 7.22160517779169e-08,
|
323 |
+
"loss": 0.5911,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 14.384,
|
328 |
+
"grad_norm": 2.8161678314208984,
|
329 |
+
"learning_rate": 1.0165906007056914e-08,
|
330 |
+
"loss": 0.6135,
|
331 |
+
"step": 460
|
332 |
+
}
|
333 |
+
],
|
334 |
+
"logging_steps": 10,
|
335 |
+
"max_steps": 465,
|
336 |
+
"num_input_tokens_seen": 0,
|
337 |
+
"num_train_epochs": 15,
|
338 |
+
"save_steps": 1000,
|
339 |
+
"stateful_callbacks": {
|
340 |
+
"TrainerControl": {
|
341 |
+
"args": {
|
342 |
+
"should_epoch_stop": false,
|
343 |
+
"should_evaluate": false,
|
344 |
+
"should_log": false,
|
345 |
+
"should_save": true,
|
346 |
+
"should_training_stop": true
|
347 |
+
},
|
348 |
+
"attributes": {}
|
349 |
+
}
|
350 |
+
},
|
351 |
+
"total_flos": 1.565274744469586e+17,
|
352 |
+
"train_batch_size": 4,
|
353 |
+
"trial_name": null,
|
354 |
+
"trial_params": null
|
355 |
+
}
|
checkpoint-465/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7965a2214104df656922b1be16c3a7c2b84d436985ed36667de02fc406d2a34b
|
3 |
+
size 5688
|
checkpoint-465/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
runs/Mar15_18-19-23_3ecefcbf63c9/events.out.tfevents.1742062886.3ecefcbf63c9.153.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:153de69cb1601de25a179b8d869cccad8a7f30e09d0d0e73f70def2162e36258
|
3 |
+
size 16395
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos": 1.
|
4 |
-
"train_loss":
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second": 0.
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 14.544,
|
3 |
+
"total_flos": 1.565274744469586e+17,
|
4 |
+
"train_loss": 1.4569768874875961,
|
5 |
+
"train_runtime": 22995.3507,
|
6 |
+
"train_samples_per_second": 0.652,
|
7 |
+
"train_steps_per_second": 0.02
|
8 |
}
|
trainer_log.jsonl
CHANGED
@@ -1,156 +1,47 @@
|
|
1 |
-
{"current_steps": 10, "total_steps":
|
2 |
-
{"current_steps": 20, "total_steps":
|
3 |
-
{"current_steps": 30, "total_steps":
|
4 |
-
{"current_steps": 40, "total_steps":
|
5 |
-
{"current_steps": 50, "total_steps":
|
6 |
-
{"current_steps": 60, "total_steps":
|
7 |
-
{"current_steps": 70, "total_steps":
|
8 |
-
{"current_steps": 80, "total_steps":
|
9 |
-
{"current_steps": 90, "total_steps":
|
10 |
-
{"current_steps": 100, "total_steps":
|
11 |
-
{"current_steps": 110, "total_steps":
|
12 |
-
{"current_steps": 120, "total_steps":
|
13 |
-
{"current_steps": 130, "total_steps":
|
14 |
-
{"current_steps": 140, "total_steps":
|
15 |
-
{"current_steps": 150, "total_steps":
|
16 |
-
{"current_steps": 160, "total_steps":
|
17 |
-
{"current_steps": 170, "total_steps":
|
18 |
-
{"current_steps": 180, "total_steps":
|
19 |
-
{"current_steps": 190, "total_steps":
|
20 |
-
{"current_steps": 200, "total_steps":
|
21 |
-
{"current_steps": 210, "total_steps":
|
22 |
-
{"current_steps": 220, "total_steps":
|
23 |
-
{"current_steps": 230, "total_steps":
|
24 |
-
{"current_steps": 240, "total_steps":
|
25 |
-
{"current_steps": 250, "total_steps":
|
26 |
-
{"current_steps": 260, "total_steps":
|
27 |
-
{"current_steps": 270, "total_steps":
|
28 |
-
{"current_steps": 280, "total_steps":
|
29 |
-
{"current_steps": 290, "total_steps":
|
30 |
-
{"current_steps": 300, "total_steps":
|
31 |
-
{"current_steps": 310, "total_steps":
|
32 |
-
{"current_steps": 320, "total_steps":
|
33 |
-
{"current_steps": 330, "total_steps":
|
34 |
-
{"current_steps": 340, "total_steps":
|
35 |
-
{"current_steps": 350, "total_steps":
|
36 |
-
{"current_steps": 360, "total_steps":
|
37 |
-
{"current_steps": 370, "total_steps":
|
38 |
-
{"current_steps": 380, "total_steps":
|
39 |
-
{"current_steps": 390, "total_steps":
|
40 |
-
{"current_steps": 400, "total_steps":
|
41 |
-
{"current_steps": 410, "total_steps":
|
42 |
-
{"current_steps": 420, "total_steps":
|
43 |
-
{"current_steps": 430, "total_steps":
|
44 |
-
{"current_steps": 440, "total_steps":
|
45 |
-
{"current_steps": 450, "total_steps":
|
46 |
-
{"current_steps": 460, "total_steps":
|
47 |
-
{"current_steps":
|
48 |
-
{"current_steps": 480, "total_steps": 1550, "loss": 0.7276, "lr": 1.7483958617668e-05, "epoch": 7.624, "percentage": 30.97, "elapsed_time": "2:55:10", "remaining_time": "6:30:29"}
|
49 |
-
{"current_steps": 490, "total_steps": 1550, "loss": 0.8071, "lr": 1.733270658843351e-05, "epoch": 7.784, "percentage": 31.61, "elapsed_time": "2:58:50", "remaining_time": "6:26:53"}
|
50 |
-
{"current_steps": 500, "total_steps": 1550, "loss": 0.7683, "lr": 1.717773580663479e-05, "epoch": 7.944, "percentage": 32.26, "elapsed_time": "3:02:32", "remaining_time": "6:23:19"}
|
51 |
-
{"current_steps": 510, "total_steps": 1550, "loss": 0.6376, "lr": 1.7019124865078625e-05, "epoch": 8.096, "percentage": 32.9, "elapsed_time": "3:06:02", "remaining_time": "6:19:22"}
|
52 |
-
{"current_steps": 520, "total_steps": 1550, "loss": 0.6286, "lr": 1.6856954202664158e-05, "epoch": 8.256, "percentage": 33.55, "elapsed_time": "3:09:43", "remaining_time": "6:15:47"}
|
53 |
-
{"current_steps": 530, "total_steps": 1550, "loss": 0.6196, "lr": 1.6691306063588583e-05, "epoch": 8.416, "percentage": 34.19, "elapsed_time": "3:13:23", "remaining_time": "6:12:12"}
|
54 |
-
{"current_steps": 540, "total_steps": 1550, "loss": 0.564, "lr": 1.652226445563737e-05, "epoch": 8.576, "percentage": 34.84, "elapsed_time": "3:17:05", "remaining_time": "6:08:37"}
|
55 |
-
{"current_steps": 550, "total_steps": 1550, "loss": 0.6122, "lr": 1.634991510758003e-05, "epoch": 8.736, "percentage": 35.48, "elapsed_time": "3:20:46", "remaining_time": "6:05:02"}
|
56 |
-
{"current_steps": 560, "total_steps": 1550, "loss": 0.6173, "lr": 1.617434542569313e-05, "epoch": 8.896, "percentage": 36.13, "elapsed_time": "3:24:27", "remaining_time": "6:01:26"}
|
57 |
-
{"current_steps": 570, "total_steps": 1550, "loss": 0.5342, "lr": 1.5995644449432538e-05, "epoch": 9.048, "percentage": 36.77, "elapsed_time": "3:27:57", "remaining_time": "5:57:32"}
|
58 |
-
{"current_steps": 580, "total_steps": 1550, "loss": 0.4269, "lr": 1.5813902806277445e-05, "epoch": 9.208, "percentage": 37.42, "elapsed_time": "3:31:38", "remaining_time": "5:53:57"}
|
59 |
-
{"current_steps": 590, "total_steps": 1550, "loss": 0.4548, "lr": 1.562921266576898e-05, "epoch": 9.368, "percentage": 38.06, "elapsed_time": "3:35:20", "remaining_time": "5:50:22"}
|
60 |
-
{"current_steps": 600, "total_steps": 1550, "loss": 0.4038, "lr": 1.5441667692766805e-05, "epoch": 9.528, "percentage": 38.71, "elapsed_time": "3:39:01", "remaining_time": "5:46:47"}
|
61 |
-
{"current_steps": 610, "total_steps": 1550, "loss": 0.4015, "lr": 1.5251362999947386e-05, "epoch": 9.688, "percentage": 39.35, "elapsed_time": "3:42:42", "remaining_time": "5:43:11"}
|
62 |
-
{"current_steps": 620, "total_steps": 1550, "loss": 0.4353, "lr": 1.5058395099567935e-05, "epoch": 9.848, "percentage": 40.0, "elapsed_time": "3:46:23", "remaining_time": "5:39:35"}
|
63 |
-
{"current_steps": 630, "total_steps": 1550, "loss": 0.3927, "lr": 1.4862861854520652e-05, "epoch": 10.0, "percentage": 40.65, "elapsed_time": "3:49:53", "remaining_time": "5:35:43"}
|
64 |
-
{"current_steps": 640, "total_steps": 1550, "loss": 0.2612, "lr": 1.4664862428701925e-05, "epoch": 10.16, "percentage": 41.29, "elapsed_time": "3:53:34", "remaining_time": "5:32:06"}
|
65 |
-
{"current_steps": 650, "total_steps": 1550, "loss": 0.2621, "lr": 1.4464497236721779e-05, "epoch": 10.32, "percentage": 41.94, "elapsed_time": "3:57:15", "remaining_time": "5:28:30"}
|
66 |
-
{"current_steps": 660, "total_steps": 1550, "loss": 0.263, "lr": 1.4261867892979e-05, "epoch": 10.48, "percentage": 42.58, "elapsed_time": "4:00:56", "remaining_time": "5:24:54"}
|
67 |
-
{"current_steps": 670, "total_steps": 1550, "loss": 0.2492, "lr": 1.4057077160127806e-05, "epoch": 10.64, "percentage": 43.23, "elapsed_time": "4:04:37", "remaining_time": "5:21:18"}
|
68 |
-
{"current_steps": 680, "total_steps": 1550, "loss": 0.2523, "lr": 1.3850228896962178e-05, "epoch": 10.8, "percentage": 43.87, "elapsed_time": "4:08:18", "remaining_time": "5:17:41"}
|
69 |
-
{"current_steps": 690, "total_steps": 1550, "loss": 0.2586, "lr": 1.3641428005744308e-05, "epoch": 10.96, "percentage": 44.52, "elapsed_time": "4:11:59", "remaining_time": "5:14:04"}
|
70 |
-
{"current_steps": 700, "total_steps": 1550, "loss": 0.1699, "lr": 1.3430780379003814e-05, "epoch": 11.112, "percentage": 45.16, "elapsed_time": "4:15:29", "remaining_time": "5:10:14"}
|
71 |
-
{"current_steps": 710, "total_steps": 1550, "loss": 0.1514, "lr": 1.3218392845834789e-05, "epoch": 11.272, "percentage": 45.81, "elapsed_time": "4:19:11", "remaining_time": "5:06:38"}
|
72 |
-
{"current_steps": 720, "total_steps": 1550, "loss": 0.1432, "lr": 1.300437311771785e-05, "epoch": 11.432, "percentage": 46.45, "elapsed_time": "4:22:52", "remaining_time": "5:03:02"}
|
73 |
-
{"current_steps": 730, "total_steps": 1550, "loss": 0.1512, "lr": 1.2788829733894698e-05, "epoch": 11.592, "percentage": 47.1, "elapsed_time": "4:26:34", "remaining_time": "4:59:25"}
|
74 |
-
{"current_steps": 740, "total_steps": 1550, "loss": 0.1534, "lr": 1.257187200632289e-05, "epoch": 11.752, "percentage": 47.74, "elapsed_time": "4:30:15", "remaining_time": "4:55:49"}
|
75 |
-
{"current_steps": 750, "total_steps": 1550, "loss": 0.1452, "lr": 1.2353609964238686e-05, "epoch": 11.912, "percentage": 48.39, "elapsed_time": "4:33:56", "remaining_time": "4:52:12"}
|
76 |
-
{"current_steps": 760, "total_steps": 1550, "loss": 0.1167, "lr": 1.213415429835621e-05, "epoch": 12.064, "percentage": 49.03, "elapsed_time": "4:37:26", "remaining_time": "4:48:24"}
|
77 |
-
{"current_steps": 770, "total_steps": 1550, "loss": 0.0785, "lr": 1.1913616304731064e-05, "epoch": 12.224, "percentage": 49.68, "elapsed_time": "4:41:07", "remaining_time": "4:44:46"}
|
78 |
-
{"current_steps": 780, "total_steps": 1550, "loss": 0.0857, "lr": 1.1692107828317014e-05, "epoch": 12.384, "percentage": 50.32, "elapsed_time": "4:44:48", "remaining_time": "4:41:09"}
|
79 |
-
{"current_steps": 790, "total_steps": 1550, "loss": 0.0862, "lr": 1.1469741206244249e-05, "epoch": 12.544, "percentage": 50.97, "elapsed_time": "4:48:29", "remaining_time": "4:37:32"}
|
80 |
-
{"current_steps": 800, "total_steps": 1550, "loss": 0.0949, "lr": 1.1246629210848062e-05, "epoch": 12.704, "percentage": 51.61, "elapsed_time": "4:52:10", "remaining_time": "4:33:54"}
|
81 |
-
{"current_steps": 810, "total_steps": 1550, "loss": 0.0928, "lr": 1.1022884992476826e-05, "epoch": 12.864, "percentage": 52.26, "elapsed_time": "4:55:51", "remaining_time": "4:30:17"}
|
82 |
-
{"current_steps": 820, "total_steps": 1550, "loss": 0.0951, "lr": 1.0821068423364156e-05, "epoch": 13.016, "percentage": 52.9, "elapsed_time": "4:59:21", "remaining_time": "4:26:30"}
|
83 |
-
{"current_steps": 830, "total_steps": 1550, "loss": 0.0483, "lr": 1.0596435812513276e-05, "epoch": 13.176, "percentage": 53.55, "elapsed_time": "5:03:01", "remaining_time": "4:22:52"}
|
84 |
-
{"current_steps": 840, "total_steps": 1550, "loss": 0.0559, "lr": 1.037150072164626e-05, "epoch": 13.336, "percentage": 54.19, "elapsed_time": "5:06:42", "remaining_time": "4:19:14"}
|
85 |
-
{"current_steps": 850, "total_steps": 1550, "loss": 0.0801, "lr": 1.0146377225686996e-05, "epoch": 13.496, "percentage": 54.84, "elapsed_time": "5:10:23", "remaining_time": "4:15:36"}
|
86 |
-
{"current_steps": 860, "total_steps": 1550, "loss": 0.0683, "lr": 9.921179495108249e-06, "epoch": 13.656, "percentage": 55.48, "elapsed_time": "5:14:03", "remaining_time": "4:11:58"}
|
87 |
-
{"current_steps": 870, "total_steps": 1550, "loss": 0.0616, "lr": 9.696021738030575e-06, "epoch": 13.816, "percentage": 56.13, "elapsed_time": "5:17:44", "remaining_time": "4:08:21"}
|
88 |
-
{"current_steps": 880, "total_steps": 1550, "loss": 0.058, "lr": 9.471018142302127e-06, "epoch": 13.975999999999999, "percentage": 56.77, "elapsed_time": "5:21:25", "remaining_time": "4:04:42"}
|
89 |
-
{"current_steps": 890, "total_steps": 1550, "loss": 0.0356, "lr": 9.24628281758876e-06, "epoch": 14.128, "percentage": 57.42, "elapsed_time": "5:24:54", "remaining_time": "4:00:56"}
|
90 |
-
{"current_steps": 900, "total_steps": 1550, "loss": 0.0458, "lr": 9.021929737503757e-06, "epoch": 14.288, "percentage": 58.06, "elapsed_time": "5:28:34", "remaining_time": "3:57:18"}
|
91 |
-
{"current_steps": 910, "total_steps": 1550, "loss": 0.0531, "lr": 8.79807268180658e-06, "epoch": 14.448, "percentage": 58.71, "elapsed_time": "5:32:15", "remaining_time": "3:53:40"}
|
92 |
-
{"current_steps": 920, "total_steps": 1550, "loss": 0.0359, "lr": 8.574825178699935e-06, "epoch": 14.608, "percentage": 59.35, "elapsed_time": "5:35:55", "remaining_time": "3:50:02"}
|
93 |
-
{"current_steps": 930, "total_steps": 1550, "loss": 0.0362, "lr": 8.352300447254372e-06, "epoch": 14.768, "percentage": 60.0, "elapsed_time": "5:39:36", "remaining_time": "3:46:24"}
|
94 |
-
{"current_steps": 940, "total_steps": 1550, "loss": 0.0292, "lr": 8.130611339989731e-06, "epoch": 14.928, "percentage": 60.65, "elapsed_time": "5:43:16", "remaining_time": "3:42:45"}
|
95 |
-
{"current_steps": 950, "total_steps": 1550, "loss": 0.0241, "lr": 7.909870285642403e-06, "epoch": 15.08, "percentage": 61.29, "elapsed_time": "5:46:45", "remaining_time": "3:39:00"}
|
96 |
-
{"current_steps": 960, "total_steps": 1550, "loss": 0.0264, "lr": 7.690189232147566e-06, "epoch": 15.24, "percentage": 61.94, "elapsed_time": "5:50:26", "remaining_time": "3:35:22"}
|
97 |
-
{"current_steps": 970, "total_steps": 1550, "loss": 0.0231, "lr": 7.4716795898652615e-06, "epoch": 15.4, "percentage": 62.58, "elapsed_time": "5:54:06", "remaining_time": "3:31:44"}
|
98 |
-
{"current_steps": 980, "total_steps": 1550, "loss": 0.0243, "lr": 7.2544521750790345e-06, "epoch": 15.56, "percentage": 63.23, "elapsed_time": "5:57:46", "remaining_time": "3:28:05"}
|
99 |
-
{"current_steps": 990, "total_steps": 1550, "loss": 0.0226, "lr": 7.038617153795948e-06, "epoch": 15.72, "percentage": 63.87, "elapsed_time": "6:01:27", "remaining_time": "3:24:27"}
|
100 |
-
{"current_steps": 1000, "total_steps": 1550, "loss": 0.0321, "lr": 6.82428398587631e-06, "epoch": 15.88, "percentage": 64.52, "elapsed_time": "6:05:07", "remaining_time": "3:20:48"}
|
101 |
-
{"current_steps": 1010, "total_steps": 1550, "loss": 0.019, "lr": 6.611561369521546e-06, "epoch": 16.032, "percentage": 65.16, "elapsed_time": "6:08:38", "remaining_time": "3:17:05"}
|
102 |
-
{"current_steps": 1020, "total_steps": 1550, "loss": 0.0101, "lr": 6.400557186148371e-06, "epoch": 16.192, "percentage": 65.81, "elapsed_time": "6:12:18", "remaining_time": "3:13:27"}
|
103 |
-
{"current_steps": 1030, "total_steps": 1550, "loss": 0.0139, "lr": 6.191378445677125e-06, "epoch": 16.352, "percentage": 66.45, "elapsed_time": "6:15:58", "remaining_time": "3:09:48"}
|
104 |
-
{"current_steps": 1040, "total_steps": 1550, "loss": 0.0264, "lr": 5.984131232262167e-06, "epoch": 16.512, "percentage": 67.1, "elapsed_time": "6:19:39", "remaining_time": "3:06:10"}
|
105 |
-
{"current_steps": 1050, "total_steps": 1550, "loss": 0.0123, "lr": 5.7789206504916815e-06, "epoch": 16.672, "percentage": 67.74, "elapsed_time": "6:23:19", "remaining_time": "3:02:32"}
|
106 |
-
{"current_steps": 1060, "total_steps": 1550, "loss": 0.0115, "lr": 5.5758507720843425e-06, "epoch": 16.832, "percentage": 68.39, "elapsed_time": "6:26:59", "remaining_time": "2:58:53"}
|
107 |
-
{"current_steps": 1070, "total_steps": 1550, "loss": 0.0135, "lr": 5.375024583109745e-06, "epoch": 16.992, "percentage": 69.03, "elapsed_time": "6:30:39", "remaining_time": "2:55:14"}
|
108 |
-
{"current_steps": 1080, "total_steps": 1550, "loss": 0.005, "lr": 5.176543931759447e-06, "epoch": 17.144, "percentage": 69.68, "elapsed_time": "6:34:08", "remaining_time": "2:51:31"}
|
109 |
-
{"current_steps": 1090, "total_steps": 1550, "loss": 0.0096, "lr": 4.980509476695043e-06, "epoch": 17.304, "percentage": 70.32, "elapsed_time": "6:37:48", "remaining_time": "2:47:52"}
|
110 |
-
{"current_steps": 1100, "total_steps": 1550, "loss": 0.0148, "lr": 4.7870206359995815e-06, "epoch": 17.464, "percentage": 70.97, "elapsed_time": "6:41:28", "remaining_time": "2:44:14"}
|
111 |
-
{"current_steps": 1110, "total_steps": 1550, "loss": 0.0067, "lr": 4.596175536758024e-06, "epoch": 17.624, "percentage": 71.61, "elapsed_time": "6:45:08", "remaining_time": "2:40:35"}
|
112 |
-
{"current_steps": 1120, "total_steps": 1550, "loss": 0.0053, "lr": 4.408070965292534e-06, "epoch": 17.784, "percentage": 72.26, "elapsed_time": "6:48:52", "remaining_time": "2:36:58"}
|
113 |
-
{"current_steps": 1130, "total_steps": 1550, "loss": 0.0079, "lr": 4.222802318077664e-06, "epoch": 17.944, "percentage": 72.9, "elapsed_time": "6:52:31", "remaining_time": "2:33:19"}
|
114 |
-
{"current_steps": 1140, "total_steps": 1550, "loss": 0.0039, "lr": 4.040463553360431e-06, "epoch": 18.096, "percentage": 73.55, "elapsed_time": "6:56:00", "remaining_time": "2:29:37"}
|
115 |
-
{"current_steps": 1150, "total_steps": 1550, "loss": 0.0023, "lr": 3.861147143509754e-06, "epoch": 18.256, "percentage": 74.19, "elapsed_time": "6:59:40", "remaining_time": "2:25:58"}
|
116 |
-
{"current_steps": 1160, "total_steps": 1550, "loss": 0.006, "lr": 3.6849440281194813e-06, "epoch": 18.416, "percentage": 74.84, "elapsed_time": "7:03:19", "remaining_time": "2:22:19"}
|
117 |
-
{"current_steps": 1170, "total_steps": 1550, "loss": 0.0023, "lr": 3.5119435678887328e-06, "epoch": 18.576, "percentage": 75.48, "elapsed_time": "7:06:59", "remaining_time": "2:18:40"}
|
118 |
-
{"current_steps": 1180, "total_steps": 1550, "loss": 0.003, "lr": 3.342233499302985e-06, "epoch": 18.736, "percentage": 76.13, "elapsed_time": "7:10:39", "remaining_time": "2:15:02"}
|
119 |
-
{"current_steps": 1190, "total_steps": 1550, "loss": 0.002, "lr": 3.175899890138858e-06, "epoch": 18.896, "percentage": 76.77, "elapsed_time": "7:14:19", "remaining_time": "2:11:23"}
|
120 |
-
{"current_steps": 1200, "total_steps": 1550, "loss": 0.0022, "lr": 3.0130270958152196e-06, "epoch": 19.048, "percentage": 77.42, "elapsed_time": "7:17:47", "remaining_time": "2:07:41"}
|
121 |
-
{"current_steps": 1210, "total_steps": 1550, "loss": 0.0022, "lr": 2.8536977166126234e-06, "epoch": 19.208, "percentage": 78.06, "elapsed_time": "7:21:27", "remaining_time": "2:04:02"}
|
122 |
-
{"current_steps": 1220, "total_steps": 1550, "loss": 0.0016, "lr": 2.697992555782969e-06, "epoch": 19.368, "percentage": 78.71, "elapsed_time": "7:25:07", "remaining_time": "2:00:24"}
|
123 |
-
{"current_steps": 1230, "total_steps": 1550, "loss": 0.0015, "lr": 2.545990578570404e-06, "epoch": 19.528, "percentage": 79.35, "elapsed_time": "7:28:47", "remaining_time": "1:56:45"}
|
124 |
-
{"current_steps": 1240, "total_steps": 1550, "loss": 0.0018, "lr": 2.397768872164462e-06, "epoch": 19.688, "percentage": 80.0, "elapsed_time": "7:32:26", "remaining_time": "1:53:06"}
|
125 |
-
{"current_steps": 1250, "total_steps": 1550, "loss": 0.0014, "lr": 2.253402606605577e-06, "epoch": 19.848, "percentage": 80.65, "elapsed_time": "7:36:06", "remaining_time": "1:49:27"}
|
126 |
-
{"current_steps": 1260, "total_steps": 1550, "loss": 0.0013, "lr": 2.1129649966629185e-06, "epoch": 20.0, "percentage": 81.29, "elapsed_time": "7:39:34", "remaining_time": "1:45:46"}
|
127 |
-
{"current_steps": 1270, "total_steps": 1550, "loss": 0.0013, "lr": 1.9765272647038038e-06, "epoch": 20.16, "percentage": 81.94, "elapsed_time": "7:43:14", "remaining_time": "1:42:07"}
|
128 |
-
{"current_steps": 1280, "total_steps": 1550, "loss": 0.0011, "lr": 1.8441586045735737e-06, "epoch": 20.32, "percentage": 82.58, "elapsed_time": "7:46:54", "remaining_time": "1:38:29"}
|
129 |
-
{"current_steps": 1290, "total_steps": 1550, "loss": 0.0013, "lr": 1.7159261465041954e-06, "epoch": 20.48, "percentage": 83.23, "elapsed_time": "7:50:33", "remaining_time": "1:34:50"}
|
130 |
-
{"current_steps": 1300, "total_steps": 1550, "loss": 0.0014, "lr": 1.5918949230694635e-06, "epoch": 20.64, "percentage": 83.87, "elapsed_time": "7:54:13", "remaining_time": "1:31:11"}
|
131 |
-
{"current_steps": 1310, "total_steps": 1550, "loss": 0.0011, "lr": 1.4721278362039626e-06, "epoch": 20.8, "percentage": 84.52, "elapsed_time": "7:57:53", "remaining_time": "1:27:33"}
|
132 |
-
{"current_steps": 1320, "total_steps": 1550, "loss": 0.0012, "lr": 1.356685625302625e-06, "epoch": 20.96, "percentage": 85.16, "elapsed_time": "8:01:33", "remaining_time": "1:23:54"}
|
133 |
-
{"current_steps": 1330, "total_steps": 1550, "loss": 0.0011, "lr": 1.2456268364169853e-06, "epoch": 21.112, "percentage": 85.81, "elapsed_time": "8:05:01", "remaining_time": "1:20:13"}
|
134 |
-
{"current_steps": 1340, "total_steps": 1550, "loss": 0.0011, "lr": 1.1390077925637865e-06, "epoch": 21.272, "percentage": 86.45, "elapsed_time": "8:08:41", "remaining_time": "1:16:35"}
|
135 |
-
{"current_steps": 1350, "total_steps": 1550, "loss": 0.001, "lr": 1.0368825651609893e-06, "epoch": 21.432, "percentage": 87.1, "elapsed_time": "8:12:20", "remaining_time": "1:12:56"}
|
136 |
-
{"current_steps": 1360, "total_steps": 1550, "loss": 0.0012, "lr": 9.393029466056714e-07, "epoch": 21.592, "percentage": 87.74, "elapsed_time": "8:16:00", "remaining_time": "1:09:17"}
|
137 |
-
{"current_steps": 1370, "total_steps": 1550, "loss": 0.0012, "lr": 8.463184240077172e-07, "epoch": 21.752, "percentage": 88.39, "elapsed_time": "8:19:40", "remaining_time": "1:05:39"}
|
138 |
-
{"current_steps": 1380, "total_steps": 1550, "loss": 0.0011, "lr": 7.579761540926434e-07, "epoch": 21.912, "percentage": 89.03, "elapsed_time": "8:23:20", "remaining_time": "1:02:00"}
|
139 |
-
{"current_steps": 1390, "total_steps": 1550, "loss": 0.001, "lr": 6.743209392862349e-07, "epoch": 22.064, "percentage": 89.68, "elapsed_time": "8:26:48", "remaining_time": "0:58:20"}
|
140 |
-
{"current_steps": 1400, "total_steps": 1550, "loss": 0.0011, "lr": 5.953952049931999e-07, "epoch": 22.224, "percentage": 90.32, "elapsed_time": "8:30:28", "remaining_time": "0:54:41"}
|
141 |
-
{"current_steps": 1410, "total_steps": 1550, "loss": 0.001, "lr": 5.212389780812733e-07, "epoch": 22.384, "percentage": 90.97, "elapsed_time": "8:34:08", "remaining_time": "0:51:02"}
|
142 |
-
{"current_steps": 1420, "total_steps": 1550, "loss": 0.0011, "lr": 4.518898665817695e-07, "epoch": 22.544, "percentage": 91.61, "elapsed_time": "8:37:48", "remaining_time": "0:47:24"}
|
143 |
-
{"current_steps": 1430, "total_steps": 1550, "loss": 0.0011, "lr": 3.8738304061681107e-07, "epoch": 22.704, "percentage": 92.26, "elapsed_time": "8:41:27", "remaining_time": "0:43:45"}
|
144 |
-
{"current_steps": 1440, "total_steps": 1550, "loss": 0.0011, "lr": 3.2775121456295024e-07, "epoch": 22.864, "percentage": 92.9, "elapsed_time": "8:45:07", "remaining_time": "0:40:06"}
|
145 |
-
{"current_steps": 1450, "total_steps": 1550, "loss": 0.001, "lr": 2.730246304601991e-07, "epoch": 23.016, "percentage": 93.55, "elapsed_time": "8:48:36", "remaining_time": "0:36:27"}
|
146 |
-
{"current_steps": 1460, "total_steps": 1550, "loss": 0.0011, "lr": 2.2323104267490404e-07, "epoch": 23.176, "percentage": 94.19, "elapsed_time": "8:52:16", "remaining_time": "0:32:48"}
|
147 |
-
{"current_steps": 1470, "total_steps": 1550, "loss": 0.001, "lr": 1.783957038242279e-07, "epoch": 23.336, "percentage": 94.84, "elapsed_time": "8:55:56", "remaining_time": "0:29:10"}
|
148 |
-
{"current_steps": 1480, "total_steps": 1550, "loss": 0.001, "lr": 1.3854135196939345e-07, "epoch": 23.496, "percentage": 95.48, "elapsed_time": "8:59:36", "remaining_time": "0:25:31"}
|
149 |
-
{"current_steps": 1490, "total_steps": 1550, "loss": 0.0011, "lr": 1.0368819908415983e-07, "epoch": 23.656, "percentage": 96.13, "elapsed_time": "9:03:15", "remaining_time": "0:21:52"}
|
150 |
-
{"current_steps": 1500, "total_steps": 1550, "loss": 0.0011, "lr": 7.385392080440535e-08, "epoch": 23.816, "percentage": 96.77, "elapsed_time": "9:06:55", "remaining_time": "0:18:13"}
|
151 |
-
{"current_steps": 1510, "total_steps": 1550, "loss": 0.0011, "lr": 4.905364746400021e-08, "epoch": 23.976, "percentage": 97.42, "elapsed_time": "9:10:35", "remaining_time": "0:14:35"}
|
152 |
-
{"current_steps": 1520, "total_steps": 1550, "loss": 0.001, "lr": 2.929995642151906e-08, "epoch": 24.128, "percentage": 98.06, "elapsed_time": "9:14:04", "remaining_time": "0:10:56"}
|
153 |
-
{"current_steps": 1530, "total_steps": 1550, "loss": 0.001, "lr": 1.4602865681682122e-08, "epoch": 24.288, "percentage": 98.71, "elapsed_time": "9:17:43", "remaining_time": "0:07:17"}
|
154 |
-
{"current_steps": 1540, "total_steps": 1550, "loss": 0.001, "lr": 4.969828814767042e-09, "epoch": 24.448, "percentage": 99.35, "elapsed_time": "9:21:23", "remaining_time": "0:03:38"}
|
155 |
-
{"current_steps": 1550, "total_steps": 1550, "loss": 0.001, "lr": 4.0573117655595684e-10, "epoch": 24.608, "percentage": 100.0, "elapsed_time": "9:25:03", "remaining_time": "0:00:00"}
|
156 |
-
{"current_steps": 1550, "total_steps": 1550, "epoch": 24.608, "percentage": 100.0, "elapsed_time": "9:25:06", "remaining_time": "0:00:00"}
|
|
|
1 |
+
{"current_steps": 10, "total_steps": 465, "loss": 10.0348, "lr": 3.8297872340425535e-06, "epoch": 0.32, "percentage": 2.15, "elapsed_time": "0:08:22", "remaining_time": "6:21:23"}
|
2 |
+
{"current_steps": 20, "total_steps": 465, "loss": 4.7312, "lr": 8.085106382978723e-06, "epoch": 0.64, "percentage": 4.3, "elapsed_time": "0:16:48", "remaining_time": "6:14:03"}
|
3 |
+
{"current_steps": 30, "total_steps": 465, "loss": 3.4362, "lr": 1.2340425531914895e-05, "epoch": 0.96, "percentage": 6.45, "elapsed_time": "0:25:14", "remaining_time": "6:05:54"}
|
4 |
+
{"current_steps": 40, "total_steps": 465, "loss": 2.5739, "lr": 1.6595744680851064e-05, "epoch": 1.256, "percentage": 8.6, "elapsed_time": "0:33:01", "remaining_time": "5:50:50"}
|
5 |
+
{"current_steps": 50, "total_steps": 465, "loss": 2.4828, "lr": 1.9998870284726968e-05, "epoch": 1.576, "percentage": 10.75, "elapsed_time": "0:41:27", "remaining_time": "5:44:04"}
|
6 |
+
{"current_steps": 60, "total_steps": 465, "loss": 2.1904, "lr": 1.9959357045100764e-05, "epoch": 1.896, "percentage": 12.9, "elapsed_time": "0:49:52", "remaining_time": "5:36:37"}
|
7 |
+
{"current_steps": 70, "total_steps": 465, "loss": 1.893, "lr": 1.9863613034027224e-05, "epoch": 2.192, "percentage": 15.05, "elapsed_time": "0:57:38", "remaining_time": "5:25:18"}
|
8 |
+
{"current_steps": 80, "total_steps": 465, "loss": 1.9328, "lr": 1.971217882451521e-05, "epoch": 2.512, "percentage": 17.2, "elapsed_time": "1:06:04", "remaining_time": "5:17:56"}
|
9 |
+
{"current_steps": 90, "total_steps": 465, "loss": 1.8361, "lr": 1.9505909417784758e-05, "epoch": 2.832, "percentage": 19.35, "elapsed_time": "1:14:29", "remaining_time": "5:10:22"}
|
10 |
+
{"current_steps": 100, "total_steps": 465, "loss": 1.6677, "lr": 1.9245969415909464e-05, "epoch": 3.128, "percentage": 21.51, "elapsed_time": "1:22:16", "remaining_time": "5:00:19"}
|
11 |
+
{"current_steps": 110, "total_steps": 465, "loss": 1.7492, "lr": 1.8933826446444933e-05, "epoch": 3.448, "percentage": 23.66, "elapsed_time": "1:30:41", "remaining_time": "4:52:41"}
|
12 |
+
{"current_steps": 120, "total_steps": 465, "loss": 1.6435, "lr": 1.8571242876167995e-05, "epoch": 3.768, "percentage": 25.81, "elapsed_time": "1:39:07", "remaining_time": "4:44:58"}
|
13 |
+
{"current_steps": 130, "total_steps": 465, "loss": 1.478, "lr": 1.8160265860711134e-05, "epoch": 4.064, "percentage": 27.96, "elapsed_time": "1:46:54", "remaining_time": "4:35:28"}
|
14 |
+
{"current_steps": 140, "total_steps": 465, "loss": 1.4807, "lr": 1.770321578627213e-05, "epoch": 4.384, "percentage": 30.11, "elapsed_time": "1:55:19", "remaining_time": "4:27:42"}
|
15 |
+
{"current_steps": 150, "total_steps": 465, "loss": 1.375, "lr": 1.7202673168657318e-05, "epoch": 4.704, "percentage": 32.26, "elapsed_time": "2:03:44", "remaining_time": "4:19:50"}
|
16 |
+
{"current_steps": 160, "total_steps": 465, "loss": 1.2751, "lr": 1.6661464083626734e-05, "epoch": 5.0, "percentage": 34.41, "elapsed_time": "2:11:32", "remaining_time": "4:10:45"}
|
17 |
+
{"current_steps": 170, "total_steps": 465, "loss": 1.2887, "lr": 1.6082644210801846e-05, "epoch": 5.32, "percentage": 36.56, "elapsed_time": "2:19:58", "remaining_time": "4:02:54"}
|
18 |
+
{"current_steps": 180, "total_steps": 465, "loss": 1.2852, "lr": 1.5469481581224274e-05, "epoch": 5.64, "percentage": 38.71, "elapsed_time": "2:28:24", "remaining_time": "3:54:58"}
|
19 |
+
{"current_steps": 190, "total_steps": 465, "loss": 1.2329, "lr": 1.4825438125973263e-05, "epoch": 5.96, "percentage": 40.86, "elapsed_time": "2:36:50", "remaining_time": "3:47:00"}
|
20 |
+
{"current_steps": 200, "total_steps": 465, "loss": 1.1001, "lr": 1.4154150130018867e-05, "epoch": 6.256, "percentage": 43.01, "elapsed_time": "2:44:37", "remaining_time": "3:38:08"}
|
21 |
+
{"current_steps": 210, "total_steps": 465, "loss": 1.1543, "lr": 1.3459407701668762e-05, "epoch": 6.576, "percentage": 45.16, "elapsed_time": "2:53:01", "remaining_time": "3:30:06"}
|
22 |
+
{"current_steps": 220, "total_steps": 465, "loss": 1.132, "lr": 1.2745133373524855e-05, "epoch": 6.896, "percentage": 47.31, "elapsed_time": "3:01:28", "remaining_time": "3:22:05"}
|
23 |
+
{"current_steps": 230, "total_steps": 465, "loss": 1.0284, "lr": 1.2015359955769021e-05, "epoch": 7.192, "percentage": 49.46, "elapsed_time": "3:09:16", "remaining_time": "3:13:23"}
|
24 |
+
{"current_steps": 240, "total_steps": 465, "loss": 1.0392, "lr": 1.127420776681905e-05, "epoch": 7.5120000000000005, "percentage": 51.61, "elapsed_time": "3:17:42", "remaining_time": "3:05:21"}
|
25 |
+
{"current_steps": 250, "total_steps": 465, "loss": 1.0436, "lr": 1.0525861369910877e-05, "epoch": 7.832, "percentage": 53.76, "elapsed_time": "3:26:09", "remaining_time": "2:57:17"}
|
26 |
+
{"current_steps": 260, "total_steps": 465, "loss": 0.8973, "lr": 9.77454594695308e-06, "epoch": 8.128, "percentage": 55.91, "elapsed_time": "3:33:57", "remaining_time": "2:48:41"}
|
27 |
+
{"current_steps": 270, "total_steps": 465, "loss": 0.9455, "lr": 9.024503443047318e-06, "epoch": 8.448, "percentage": 58.06, "elapsed_time": "3:42:23", "remaining_time": "2:40:37"}
|
28 |
+
{"current_steps": 280, "total_steps": 465, "loss": 0.9297, "lr": 8.279968616363417e-06, "epoch": 8.768, "percentage": 60.22, "elapsed_time": "3:50:50", "remaining_time": "2:32:31"}
|
29 |
+
{"current_steps": 290, "total_steps": 465, "loss": 0.8414, "lr": 7.545145128592009e-06, "epoch": 9.064, "percentage": 62.37, "elapsed_time": "3:58:39", "remaining_time": "2:24:00"}
|
30 |
+
{"current_steps": 300, "total_steps": 465, "loss": 0.8513, "lr": 6.824181810968675e-06, "epoch": 9.384, "percentage": 64.52, "elapsed_time": "4:07:04", "remaining_time": "2:15:53"}
|
31 |
+
{"current_steps": 310, "total_steps": 465, "loss": 0.8351, "lr": 6.121149239872151e-06, "epoch": 9.704, "percentage": 66.67, "elapsed_time": "4:15:31", "remaining_time": "2:07:45"}
|
32 |
+
{"current_steps": 320, "total_steps": 465, "loss": 0.7886, "lr": 5.440016754251364e-06, "epoch": 10.0, "percentage": 68.82, "elapsed_time": "4:23:20", "remaining_time": "1:59:19"}
|
33 |
+
{"current_steps": 330, "total_steps": 465, "loss": 0.7832, "lr": 4.784630044641435e-06, "epoch": 10.32, "percentage": 70.97, "elapsed_time": "4:31:47", "remaining_time": "1:51:11"}
|
34 |
+
{"current_steps": 340, "total_steps": 465, "loss": 0.7555, "lr": 4.1586894403016576e-06, "epoch": 10.64, "percentage": 73.12, "elapsed_time": "4:40:13", "remaining_time": "1:43:01"}
|
35 |
+
{"current_steps": 350, "total_steps": 465, "loss": 0.7529, "lr": 3.565729017066729e-06, "epoch": 10.96, "percentage": 75.27, "elapsed_time": "4:48:39", "remaining_time": "1:34:50"}
|
36 |
+
{"current_steps": 360, "total_steps": 465, "loss": 0.6507, "lr": 3.0090966438688774e-06, "epoch": 11.256, "percentage": 77.42, "elapsed_time": "4:56:29", "remaining_time": "1:26:28"}
|
37 |
+
{"current_steps": 370, "total_steps": 465, "loss": 0.7048, "lr": 2.491935080588658e-06, "epoch": 11.576, "percentage": 79.57, "elapsed_time": "5:04:56", "remaining_time": "1:18:17"}
|
38 |
+
{"current_steps": 380, "total_steps": 465, "loss": 0.6911, "lr": 2.01716423395644e-06, "epoch": 11.896, "percentage": 81.72, "elapsed_time": "5:13:22", "remaining_time": "1:10:05"}
|
39 |
+
{"current_steps": 390, "total_steps": 465, "loss": 0.6039, "lr": 1.587464671688187e-06, "epoch": 12.192, "percentage": 83.87, "elapsed_time": "5:21:10", "remaining_time": "1:01:45"}
|
40 |
+
{"current_steps": 400, "total_steps": 465, "loss": 0.6456, "lr": 1.2052624879351105e-06, "epoch": 12.512, "percentage": 86.02, "elapsed_time": "5:29:36", "remaining_time": "0:53:33"}
|
41 |
+
{"current_steps": 410, "total_steps": 465, "loss": 0.6479, "lr": 8.727156054972374e-07, "epoch": 12.832, "percentage": 88.17, "elapsed_time": "5:38:02", "remaining_time": "0:45:20"}
|
42 |
+
{"current_steps": 420, "total_steps": 465, "loss": 0.6013, "lr": 5.917015921389569e-07, "epoch": 13.128, "percentage": 90.32, "elapsed_time": "5:45:51", "remaining_time": "0:37:03"}
|
43 |
+
{"current_steps": 430, "total_steps": 465, "loss": 0.6168, "lr": 3.638070597958665e-07, "epoch": 13.448, "percentage": 92.47, "elapsed_time": "5:54:19", "remaining_time": "0:28:50"}
|
44 |
+
{"current_steps": 440, "total_steps": 465, "loss": 0.6093, "lr": 1.903187065253076e-07, "epoch": 13.768, "percentage": 94.62, "elapsed_time": "6:02:46", "remaining_time": "0:20:36"}
|
45 |
+
{"current_steps": 450, "total_steps": 465, "loss": 0.5911, "lr": 7.22160517779169e-08, "epoch": 14.064, "percentage": 96.77, "elapsed_time": "6:10:33", "remaining_time": "0:12:21"}
|
46 |
+
{"current_steps": 460, "total_steps": 465, "loss": 0.6135, "lr": 1.0165906007056914e-08, "epoch": 14.384, "percentage": 98.92, "elapsed_time": "6:18:59", "remaining_time": "0:04:07"}
|
47 |
+
{"current_steps": 465, "total_steps": 465, "epoch": 14.544, "percentage": 100.0, "elapsed_time": "6:23:14", "remaining_time": "0:00:00"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trainer_state.json
CHANGED
@@ -1,1112 +1,349 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch":
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
-
"epoch": 0.
|
13 |
-
"grad_norm":
|
14 |
-
"learning_rate":
|
15 |
-
"loss":
|
16 |
"step": 10
|
17 |
},
|
18 |
{
|
19 |
-
"epoch": 0.
|
20 |
-
"grad_norm":
|
21 |
-
"learning_rate":
|
22 |
-
"loss":
|
23 |
"step": 20
|
24 |
},
|
25 |
{
|
26 |
-
"epoch": 0.
|
27 |
-
"grad_norm":
|
28 |
-
"learning_rate":
|
29 |
-
"loss":
|
30 |
"step": 30
|
31 |
},
|
32 |
{
|
33 |
-
"epoch":
|
34 |
-
"grad_norm":
|
35 |
-
"learning_rate":
|
36 |
-
"loss":
|
37 |
"step": 40
|
38 |
},
|
39 |
{
|
40 |
-
"epoch":
|
41 |
-
"grad_norm":
|
42 |
-
"learning_rate":
|
43 |
-
"loss": 2.
|
44 |
"step": 50
|
45 |
},
|
46 |
{
|
47 |
-
"epoch":
|
48 |
-
"grad_norm":
|
49 |
-
"learning_rate":
|
50 |
-
"loss": 2.
|
51 |
"step": 60
|
52 |
},
|
53 |
{
|
54 |
-
"epoch":
|
55 |
-
"grad_norm":
|
56 |
-
"learning_rate":
|
57 |
-
"loss":
|
58 |
"step": 70
|
59 |
},
|
60 |
{
|
61 |
-
"epoch":
|
62 |
-
"grad_norm":
|
63 |
-
"learning_rate":
|
64 |
-
"loss":
|
65 |
"step": 80
|
66 |
},
|
67 |
{
|
68 |
-
"epoch":
|
69 |
-
"grad_norm":
|
70 |
-
"learning_rate": 1.
|
71 |
-
"loss":
|
72 |
"step": 90
|
73 |
},
|
74 |
{
|
75 |
-
"epoch":
|
76 |
-
"grad_norm":
|
77 |
-
"learning_rate": 1.
|
78 |
-
"loss":
|
79 |
"step": 100
|
80 |
},
|
81 |
{
|
82 |
-
"epoch":
|
83 |
-
"grad_norm":
|
84 |
-
"learning_rate": 1.
|
85 |
-
"loss":
|
86 |
"step": 110
|
87 |
},
|
88 |
{
|
89 |
-
"epoch":
|
90 |
-
"grad_norm":
|
91 |
-
"learning_rate": 1.
|
92 |
-
"loss":
|
93 |
"step": 120
|
94 |
},
|
95 |
{
|
96 |
-
"epoch":
|
97 |
-
"grad_norm":
|
98 |
-
"learning_rate": 1.
|
99 |
-
"loss":
|
100 |
"step": 130
|
101 |
},
|
102 |
{
|
103 |
-
"epoch":
|
104 |
-
"grad_norm":
|
105 |
-
"learning_rate": 1.
|
106 |
-
"loss": 1.
|
107 |
"step": 140
|
108 |
},
|
109 |
{
|
110 |
-
"epoch":
|
111 |
-
"grad_norm":
|
112 |
-
"learning_rate": 1.
|
113 |
-
"loss": 1.
|
114 |
"step": 150
|
115 |
},
|
116 |
{
|
117 |
-
"epoch":
|
118 |
-
"grad_norm":
|
119 |
-
"learning_rate": 1.
|
120 |
-
"loss": 1.
|
121 |
"step": 160
|
122 |
},
|
123 |
{
|
124 |
-
"epoch":
|
125 |
-
"grad_norm":
|
126 |
-
"learning_rate": 1.
|
127 |
-
"loss": 1.
|
128 |
"step": 170
|
129 |
},
|
130 |
{
|
131 |
-
"epoch":
|
132 |
-
"grad_norm":
|
133 |
-
"learning_rate": 1.
|
134 |
-
"loss": 1.
|
135 |
"step": 180
|
136 |
},
|
137 |
{
|
138 |
-
"epoch":
|
139 |
-
"grad_norm":
|
140 |
-
"learning_rate": 1.
|
141 |
-
"loss": 1.
|
142 |
"step": 190
|
143 |
},
|
144 |
{
|
145 |
-
"epoch":
|
146 |
-
"grad_norm":
|
147 |
-
"learning_rate": 1.
|
148 |
-
"loss": 1.
|
149 |
"step": 200
|
150 |
},
|
151 |
{
|
152 |
-
"epoch":
|
153 |
-
"grad_norm":
|
154 |
-
"learning_rate": 1.
|
155 |
-
"loss": 1.
|
156 |
"step": 210
|
157 |
},
|
158 |
{
|
159 |
-
"epoch":
|
160 |
-
"grad_norm": 2.
|
161 |
-
"learning_rate": 1.
|
162 |
-
"loss": 1.
|
163 |
"step": 220
|
164 |
},
|
165 |
{
|
166 |
-
"epoch":
|
167 |
-
"grad_norm":
|
168 |
-
"learning_rate": 1.
|
169 |
-
"loss": 1.
|
170 |
"step": 230
|
171 |
},
|
172 |
{
|
173 |
-
"epoch":
|
174 |
-
"grad_norm": 3.
|
175 |
-
"learning_rate": 1.
|
176 |
-
"loss": 1.
|
177 |
"step": 240
|
178 |
},
|
179 |
{
|
180 |
-
"epoch":
|
181 |
-
"grad_norm":
|
182 |
-
"learning_rate": 1.
|
183 |
-
"loss": 1.
|
184 |
"step": 250
|
185 |
},
|
186 |
{
|
187 |
-
"epoch":
|
188 |
-
"grad_norm": 2.
|
189 |
-
"learning_rate":
|
190 |
-
"loss":
|
191 |
"step": 260
|
192 |
},
|
193 |
{
|
194 |
-
"epoch":
|
195 |
-
"grad_norm": 3.
|
196 |
-
"learning_rate":
|
197 |
-
"loss":
|
198 |
"step": 270
|
199 |
},
|
200 |
{
|
201 |
-
"epoch":
|
202 |
-
"grad_norm":
|
203 |
-
"learning_rate":
|
204 |
-
"loss":
|
205 |
"step": 280
|
206 |
},
|
207 |
{
|
208 |
-
"epoch":
|
209 |
-
"grad_norm":
|
210 |
-
"learning_rate":
|
211 |
-
"loss":
|
212 |
"step": 290
|
213 |
},
|
214 |
{
|
215 |
-
"epoch":
|
216 |
-
"grad_norm":
|
217 |
-
"learning_rate":
|
218 |
-
"loss":
|
219 |
"step": 300
|
220 |
},
|
221 |
{
|
222 |
-
"epoch":
|
223 |
-
"grad_norm":
|
224 |
-
"learning_rate":
|
225 |
-
"loss":
|
226 |
"step": 310
|
227 |
},
|
228 |
{
|
229 |
-
"epoch":
|
230 |
-
"grad_norm":
|
231 |
-
"learning_rate":
|
232 |
-
"loss":
|
233 |
"step": 320
|
234 |
},
|
235 |
{
|
236 |
-
"epoch":
|
237 |
-
"grad_norm":
|
238 |
-
"learning_rate":
|
239 |
-
"loss":
|
240 |
"step": 330
|
241 |
},
|
242 |
{
|
243 |
-
"epoch":
|
244 |
-
"grad_norm":
|
245 |
-
"learning_rate":
|
246 |
-
"loss":
|
247 |
"step": 340
|
248 |
},
|
249 |
{
|
250 |
-
"epoch":
|
251 |
-
"grad_norm":
|
252 |
-
"learning_rate":
|
253 |
-
"loss":
|
254 |
"step": 350
|
255 |
},
|
256 |
{
|
257 |
-
"epoch":
|
258 |
-
"grad_norm":
|
259 |
-
"learning_rate":
|
260 |
-
"loss":
|
261 |
"step": 360
|
262 |
},
|
263 |
{
|
264 |
-
"epoch":
|
265 |
-
"grad_norm": 3.
|
266 |
-
"learning_rate":
|
267 |
-
"loss":
|
268 |
"step": 370
|
269 |
},
|
270 |
{
|
271 |
-
"epoch":
|
272 |
-
"grad_norm":
|
273 |
-
"learning_rate":
|
274 |
-
"loss": 0.
|
275 |
"step": 380
|
276 |
},
|
277 |
{
|
278 |
-
"epoch":
|
279 |
-
"grad_norm":
|
280 |
-
"learning_rate": 1.
|
281 |
-
"loss": 0.
|
282 |
"step": 390
|
283 |
},
|
284 |
{
|
285 |
-
"epoch":
|
286 |
-
"grad_norm":
|
287 |
-
"learning_rate": 1.
|
288 |
-
"loss": 0.
|
289 |
"step": 400
|
290 |
},
|
291 |
{
|
292 |
-
"epoch":
|
293 |
-
"grad_norm":
|
294 |
-
"learning_rate":
|
295 |
-
"loss": 0.
|
296 |
"step": 410
|
297 |
},
|
298 |
{
|
299 |
-
"epoch":
|
300 |
-
"grad_norm":
|
301 |
-
"learning_rate":
|
302 |
-
"loss": 0.
|
303 |
"step": 420
|
304 |
},
|
305 |
{
|
306 |
-
"epoch":
|
307 |
-
"grad_norm":
|
308 |
-
"learning_rate":
|
309 |
-
"loss":
|
310 |
"step": 430
|
311 |
},
|
312 |
{
|
313 |
-
"epoch":
|
314 |
-
"grad_norm":
|
315 |
-
"learning_rate": 1.
|
316 |
-
"loss": 0.
|
317 |
"step": 440
|
318 |
},
|
319 |
{
|
320 |
-
"epoch":
|
321 |
-
"grad_norm":
|
322 |
-
"learning_rate":
|
323 |
-
"loss": 0.
|
324 |
"step": 450
|
325 |
},
|
326 |
{
|
327 |
-
"epoch":
|
328 |
-
"grad_norm":
|
329 |
-
"learning_rate": 1.
|
330 |
-
"loss": 0.
|
331 |
"step": 460
|
332 |
},
|
333 |
{
|
334 |
-
"epoch":
|
335 |
-
"
|
336 |
-
"
|
337 |
-
"
|
338 |
-
"
|
339 |
-
|
340 |
-
|
341 |
-
"epoch": 7.624,
|
342 |
-
"grad_norm": 6.085780143737793,
|
343 |
-
"learning_rate": 1.7483958617668e-05,
|
344 |
-
"loss": 0.7276,
|
345 |
-
"step": 480
|
346 |
-
},
|
347 |
-
{
|
348 |
-
"epoch": 7.784,
|
349 |
-
"grad_norm": 4.569671630859375,
|
350 |
-
"learning_rate": 1.733270658843351e-05,
|
351 |
-
"loss": 0.8071,
|
352 |
-
"step": 490
|
353 |
-
},
|
354 |
-
{
|
355 |
-
"epoch": 7.944,
|
356 |
-
"grad_norm": 6.115426540374756,
|
357 |
-
"learning_rate": 1.717773580663479e-05,
|
358 |
-
"loss": 0.7683,
|
359 |
-
"step": 500
|
360 |
-
},
|
361 |
-
{
|
362 |
-
"epoch": 8.096,
|
363 |
-
"grad_norm": 4.305016040802002,
|
364 |
-
"learning_rate": 1.7019124865078625e-05,
|
365 |
-
"loss": 0.6376,
|
366 |
-
"step": 510
|
367 |
-
},
|
368 |
-
{
|
369 |
-
"epoch": 8.256,
|
370 |
-
"grad_norm": 6.470266342163086,
|
371 |
-
"learning_rate": 1.6856954202664158e-05,
|
372 |
-
"loss": 0.6286,
|
373 |
-
"step": 520
|
374 |
-
},
|
375 |
-
{
|
376 |
-
"epoch": 8.416,
|
377 |
-
"grad_norm": 6.055320739746094,
|
378 |
-
"learning_rate": 1.6691306063588583e-05,
|
379 |
-
"loss": 0.6196,
|
380 |
-
"step": 530
|
381 |
-
},
|
382 |
-
{
|
383 |
-
"epoch": 8.576,
|
384 |
-
"grad_norm": 6.73253870010376,
|
385 |
-
"learning_rate": 1.652226445563737e-05,
|
386 |
-
"loss": 0.564,
|
387 |
-
"step": 540
|
388 |
-
},
|
389 |
-
{
|
390 |
-
"epoch": 8.736,
|
391 |
-
"grad_norm": 5.043179512023926,
|
392 |
-
"learning_rate": 1.634991510758003e-05,
|
393 |
-
"loss": 0.6122,
|
394 |
-
"step": 550
|
395 |
-
},
|
396 |
-
{
|
397 |
-
"epoch": 8.896,
|
398 |
-
"grad_norm": 6.78087854385376,
|
399 |
-
"learning_rate": 1.617434542569313e-05,
|
400 |
-
"loss": 0.6173,
|
401 |
-
"step": 560
|
402 |
-
},
|
403 |
-
{
|
404 |
-
"epoch": 9.048,
|
405 |
-
"grad_norm": 6.2355146408081055,
|
406 |
-
"learning_rate": 1.5995644449432538e-05,
|
407 |
-
"loss": 0.5342,
|
408 |
-
"step": 570
|
409 |
-
},
|
410 |
-
{
|
411 |
-
"epoch": 9.208,
|
412 |
-
"grad_norm": 5.987257480621338,
|
413 |
-
"learning_rate": 1.5813902806277445e-05,
|
414 |
-
"loss": 0.4269,
|
415 |
-
"step": 580
|
416 |
-
},
|
417 |
-
{
|
418 |
-
"epoch": 9.368,
|
419 |
-
"grad_norm": 5.455114364624023,
|
420 |
-
"learning_rate": 1.562921266576898e-05,
|
421 |
-
"loss": 0.4548,
|
422 |
-
"step": 590
|
423 |
-
},
|
424 |
-
{
|
425 |
-
"epoch": 9.528,
|
426 |
-
"grad_norm": 5.296268463134766,
|
427 |
-
"learning_rate": 1.5441667692766805e-05,
|
428 |
-
"loss": 0.4038,
|
429 |
-
"step": 600
|
430 |
-
},
|
431 |
-
{
|
432 |
-
"epoch": 9.688,
|
433 |
-
"grad_norm": 5.551358699798584,
|
434 |
-
"learning_rate": 1.5251362999947386e-05,
|
435 |
-
"loss": 0.4015,
|
436 |
-
"step": 610
|
437 |
-
},
|
438 |
-
{
|
439 |
-
"epoch": 9.848,
|
440 |
-
"grad_norm": 4.464796543121338,
|
441 |
-
"learning_rate": 1.5058395099567935e-05,
|
442 |
-
"loss": 0.4353,
|
443 |
-
"step": 620
|
444 |
-
},
|
445 |
-
{
|
446 |
-
"epoch": 10.0,
|
447 |
-
"grad_norm": 3.268158197402954,
|
448 |
-
"learning_rate": 1.4862861854520652e-05,
|
449 |
-
"loss": 0.3927,
|
450 |
-
"step": 630
|
451 |
-
},
|
452 |
-
{
|
453 |
-
"epoch": 10.16,
|
454 |
-
"grad_norm": 8.046059608459473,
|
455 |
-
"learning_rate": 1.4664862428701925e-05,
|
456 |
-
"loss": 0.2612,
|
457 |
-
"step": 640
|
458 |
-
},
|
459 |
-
{
|
460 |
-
"epoch": 10.32,
|
461 |
-
"grad_norm": 4.157690048217773,
|
462 |
-
"learning_rate": 1.4464497236721779e-05,
|
463 |
-
"loss": 0.2621,
|
464 |
-
"step": 650
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"epoch": 10.48,
|
468 |
-
"grad_norm": 5.3797688484191895,
|
469 |
-
"learning_rate": 1.4261867892979e-05,
|
470 |
-
"loss": 0.263,
|
471 |
-
"step": 660
|
472 |
-
},
|
473 |
-
{
|
474 |
-
"epoch": 10.64,
|
475 |
-
"grad_norm": 4.068567276000977,
|
476 |
-
"learning_rate": 1.4057077160127806e-05,
|
477 |
-
"loss": 0.2492,
|
478 |
-
"step": 670
|
479 |
-
},
|
480 |
-
{
|
481 |
-
"epoch": 10.8,
|
482 |
-
"grad_norm": 5.405711650848389,
|
483 |
-
"learning_rate": 1.3850228896962178e-05,
|
484 |
-
"loss": 0.2523,
|
485 |
-
"step": 680
|
486 |
-
},
|
487 |
-
{
|
488 |
-
"epoch": 10.96,
|
489 |
-
"grad_norm": 4.762354373931885,
|
490 |
-
"learning_rate": 1.3641428005744308e-05,
|
491 |
-
"loss": 0.2586,
|
492 |
-
"step": 690
|
493 |
-
},
|
494 |
-
{
|
495 |
-
"epoch": 11.112,
|
496 |
-
"grad_norm": 5.127146244049072,
|
497 |
-
"learning_rate": 1.3430780379003814e-05,
|
498 |
-
"loss": 0.1699,
|
499 |
-
"step": 700
|
500 |
-
},
|
501 |
-
{
|
502 |
-
"epoch": 11.272,
|
503 |
-
"grad_norm": 3.0993189811706543,
|
504 |
-
"learning_rate": 1.3218392845834789e-05,
|
505 |
-
"loss": 0.1514,
|
506 |
-
"step": 710
|
507 |
-
},
|
508 |
-
{
|
509 |
-
"epoch": 11.432,
|
510 |
-
"grad_norm": 5.754135608673096,
|
511 |
-
"learning_rate": 1.300437311771785e-05,
|
512 |
-
"loss": 0.1432,
|
513 |
-
"step": 720
|
514 |
-
},
|
515 |
-
{
|
516 |
-
"epoch": 11.592,
|
517 |
-
"grad_norm": 4.12827730178833,
|
518 |
-
"learning_rate": 1.2788829733894698e-05,
|
519 |
-
"loss": 0.1512,
|
520 |
-
"step": 730
|
521 |
-
},
|
522 |
-
{
|
523 |
-
"epoch": 11.752,
|
524 |
-
"grad_norm": 4.6962175369262695,
|
525 |
-
"learning_rate": 1.257187200632289e-05,
|
526 |
-
"loss": 0.1534,
|
527 |
-
"step": 740
|
528 |
-
},
|
529 |
-
{
|
530 |
-
"epoch": 11.912,
|
531 |
-
"grad_norm": 6.317523002624512,
|
532 |
-
"learning_rate": 1.2353609964238686e-05,
|
533 |
-
"loss": 0.1452,
|
534 |
-
"step": 750
|
535 |
-
},
|
536 |
-
{
|
537 |
-
"epoch": 12.064,
|
538 |
-
"grad_norm": 2.793424367904663,
|
539 |
-
"learning_rate": 1.213415429835621e-05,
|
540 |
-
"loss": 0.1167,
|
541 |
-
"step": 760
|
542 |
-
},
|
543 |
-
{
|
544 |
-
"epoch": 12.224,
|
545 |
-
"grad_norm": 3.816258668899536,
|
546 |
-
"learning_rate": 1.1913616304731064e-05,
|
547 |
-
"loss": 0.0785,
|
548 |
-
"step": 770
|
549 |
-
},
|
550 |
-
{
|
551 |
-
"epoch": 12.384,
|
552 |
-
"grad_norm": 3.989567518234253,
|
553 |
-
"learning_rate": 1.1692107828317014e-05,
|
554 |
-
"loss": 0.0857,
|
555 |
-
"step": 780
|
556 |
-
},
|
557 |
-
{
|
558 |
-
"epoch": 12.544,
|
559 |
-
"grad_norm": 4.456111431121826,
|
560 |
-
"learning_rate": 1.1469741206244249e-05,
|
561 |
-
"loss": 0.0862,
|
562 |
-
"step": 790
|
563 |
-
},
|
564 |
-
{
|
565 |
-
"epoch": 12.704,
|
566 |
-
"grad_norm": 4.539771556854248,
|
567 |
-
"learning_rate": 1.1246629210848062e-05,
|
568 |
-
"loss": 0.0949,
|
569 |
-
"step": 800
|
570 |
-
},
|
571 |
-
{
|
572 |
-
"epoch": 12.864,
|
573 |
-
"grad_norm": 2.4530129432678223,
|
574 |
-
"learning_rate": 1.1022884992476826e-05,
|
575 |
-
"loss": 0.0928,
|
576 |
-
"step": 810
|
577 |
-
},
|
578 |
-
{
|
579 |
-
"epoch": 13.016,
|
580 |
-
"grad_norm": 2.042999267578125,
|
581 |
-
"learning_rate": 1.0821068423364156e-05,
|
582 |
-
"loss": 0.0951,
|
583 |
-
"step": 820
|
584 |
-
},
|
585 |
-
{
|
586 |
-
"epoch": 13.176,
|
587 |
-
"grad_norm": 2.9049434661865234,
|
588 |
-
"learning_rate": 1.0596435812513276e-05,
|
589 |
-
"loss": 0.0483,
|
590 |
-
"step": 830
|
591 |
-
},
|
592 |
-
{
|
593 |
-
"epoch": 13.336,
|
594 |
-
"grad_norm": 2.3502166271209717,
|
595 |
-
"learning_rate": 1.037150072164626e-05,
|
596 |
-
"loss": 0.0559,
|
597 |
-
"step": 840
|
598 |
-
},
|
599 |
-
{
|
600 |
-
"epoch": 13.496,
|
601 |
-
"grad_norm": 2.2428765296936035,
|
602 |
-
"learning_rate": 1.0146377225686996e-05,
|
603 |
-
"loss": 0.0801,
|
604 |
-
"step": 850
|
605 |
-
},
|
606 |
-
{
|
607 |
-
"epoch": 13.656,
|
608 |
-
"grad_norm": 5.673745155334473,
|
609 |
-
"learning_rate": 9.921179495108249e-06,
|
610 |
-
"loss": 0.0683,
|
611 |
-
"step": 860
|
612 |
-
},
|
613 |
-
{
|
614 |
-
"epoch": 13.816,
|
615 |
-
"grad_norm": 3.9386937618255615,
|
616 |
-
"learning_rate": 9.696021738030575e-06,
|
617 |
-
"loss": 0.0616,
|
618 |
-
"step": 870
|
619 |
-
},
|
620 |
-
{
|
621 |
-
"epoch": 13.975999999999999,
|
622 |
-
"grad_norm": 4.362432479858398,
|
623 |
-
"learning_rate": 9.471018142302127e-06,
|
624 |
-
"loss": 0.058,
|
625 |
-
"step": 880
|
626 |
-
},
|
627 |
-
{
|
628 |
-
"epoch": 14.128,
|
629 |
-
"grad_norm": 2.225241184234619,
|
630 |
-
"learning_rate": 9.24628281758876e-06,
|
631 |
-
"loss": 0.0356,
|
632 |
-
"step": 890
|
633 |
-
},
|
634 |
-
{
|
635 |
-
"epoch": 14.288,
|
636 |
-
"grad_norm": 4.0786356925964355,
|
637 |
-
"learning_rate": 9.021929737503757e-06,
|
638 |
-
"loss": 0.0458,
|
639 |
-
"step": 900
|
640 |
-
},
|
641 |
-
{
|
642 |
-
"epoch": 14.448,
|
643 |
-
"grad_norm": 2.464179277420044,
|
644 |
-
"learning_rate": 8.79807268180658e-06,
|
645 |
-
"loss": 0.0531,
|
646 |
-
"step": 910
|
647 |
-
},
|
648 |
-
{
|
649 |
-
"epoch": 14.608,
|
650 |
-
"grad_norm": 2.679661273956299,
|
651 |
-
"learning_rate": 8.574825178699935e-06,
|
652 |
-
"loss": 0.0359,
|
653 |
-
"step": 920
|
654 |
-
},
|
655 |
-
{
|
656 |
-
"epoch": 14.768,
|
657 |
-
"grad_norm": 2.0911498069763184,
|
658 |
-
"learning_rate": 8.352300447254372e-06,
|
659 |
-
"loss": 0.0362,
|
660 |
-
"step": 930
|
661 |
-
},
|
662 |
-
{
|
663 |
-
"epoch": 14.928,
|
664 |
-
"grad_norm": 2.3030571937561035,
|
665 |
-
"learning_rate": 8.130611339989731e-06,
|
666 |
-
"loss": 0.0292,
|
667 |
-
"step": 940
|
668 |
-
},
|
669 |
-
{
|
670 |
-
"epoch": 15.08,
|
671 |
-
"grad_norm": 1.6733816862106323,
|
672 |
-
"learning_rate": 7.909870285642403e-06,
|
673 |
-
"loss": 0.0241,
|
674 |
-
"step": 950
|
675 |
-
},
|
676 |
-
{
|
677 |
-
"epoch": 15.24,
|
678 |
-
"grad_norm": 1.4519929885864258,
|
679 |
-
"learning_rate": 7.690189232147566e-06,
|
680 |
-
"loss": 0.0264,
|
681 |
-
"step": 960
|
682 |
-
},
|
683 |
-
{
|
684 |
-
"epoch": 15.4,
|
685 |
-
"grad_norm": 1.980666995048523,
|
686 |
-
"learning_rate": 7.4716795898652615e-06,
|
687 |
-
"loss": 0.0231,
|
688 |
-
"step": 970
|
689 |
-
},
|
690 |
-
{
|
691 |
-
"epoch": 15.56,
|
692 |
-
"grad_norm": 2.6794183254241943,
|
693 |
-
"learning_rate": 7.2544521750790345e-06,
|
694 |
-
"loss": 0.0243,
|
695 |
-
"step": 980
|
696 |
-
},
|
697 |
-
{
|
698 |
-
"epoch": 15.72,
|
699 |
-
"grad_norm": 1.8193122148513794,
|
700 |
-
"learning_rate": 7.038617153795948e-06,
|
701 |
-
"loss": 0.0226,
|
702 |
-
"step": 990
|
703 |
-
},
|
704 |
-
{
|
705 |
-
"epoch": 15.88,
|
706 |
-
"grad_norm": 2.1489455699920654,
|
707 |
-
"learning_rate": 6.82428398587631e-06,
|
708 |
-
"loss": 0.0321,
|
709 |
-
"step": 1000
|
710 |
-
},
|
711 |
-
{
|
712 |
-
"epoch": 16.032,
|
713 |
-
"grad_norm": 0.9566267728805542,
|
714 |
-
"learning_rate": 6.611561369521546e-06,
|
715 |
-
"loss": 0.019,
|
716 |
-
"step": 1010
|
717 |
-
},
|
718 |
-
{
|
719 |
-
"epoch": 16.192,
|
720 |
-
"grad_norm": 0.45050784945487976,
|
721 |
-
"learning_rate": 6.400557186148371e-06,
|
722 |
-
"loss": 0.0101,
|
723 |
-
"step": 1020
|
724 |
-
},
|
725 |
-
{
|
726 |
-
"epoch": 16.352,
|
727 |
-
"grad_norm": 3.0079352855682373,
|
728 |
-
"learning_rate": 6.191378445677125e-06,
|
729 |
-
"loss": 0.0139,
|
730 |
-
"step": 1030
|
731 |
-
},
|
732 |
-
{
|
733 |
-
"epoch": 16.512,
|
734 |
-
"grad_norm": 1.0027068853378296,
|
735 |
-
"learning_rate": 5.984131232262167e-06,
|
736 |
-
"loss": 0.0264,
|
737 |
-
"step": 1040
|
738 |
-
},
|
739 |
-
{
|
740 |
-
"epoch": 16.672,
|
741 |
-
"grad_norm": 0.34918779134750366,
|
742 |
-
"learning_rate": 5.7789206504916815e-06,
|
743 |
-
"loss": 0.0123,
|
744 |
-
"step": 1050
|
745 |
-
},
|
746 |
-
{
|
747 |
-
"epoch": 16.832,
|
748 |
-
"grad_norm": 1.0329653024673462,
|
749 |
-
"learning_rate": 5.5758507720843425e-06,
|
750 |
-
"loss": 0.0115,
|
751 |
-
"step": 1060
|
752 |
-
},
|
753 |
-
{
|
754 |
-
"epoch": 16.992,
|
755 |
-
"grad_norm": 1.9161659479141235,
|
756 |
-
"learning_rate": 5.375024583109745e-06,
|
757 |
-
"loss": 0.0135,
|
758 |
-
"step": 1070
|
759 |
-
},
|
760 |
-
{
|
761 |
-
"epoch": 17.144,
|
762 |
-
"grad_norm": 0.42554718255996704,
|
763 |
-
"learning_rate": 5.176543931759447e-06,
|
764 |
-
"loss": 0.005,
|
765 |
-
"step": 1080
|
766 |
-
},
|
767 |
-
{
|
768 |
-
"epoch": 17.304,
|
769 |
-
"grad_norm": 0.7298970818519592,
|
770 |
-
"learning_rate": 4.980509476695043e-06,
|
771 |
-
"loss": 0.0096,
|
772 |
-
"step": 1090
|
773 |
-
},
|
774 |
-
{
|
775 |
-
"epoch": 17.464,
|
776 |
-
"grad_norm": 2.393183946609497,
|
777 |
-
"learning_rate": 4.7870206359995815e-06,
|
778 |
-
"loss": 0.0148,
|
779 |
-
"step": 1100
|
780 |
-
},
|
781 |
-
{
|
782 |
-
"epoch": 17.624,
|
783 |
-
"grad_norm": 0.4778424799442291,
|
784 |
-
"learning_rate": 4.596175536758024e-06,
|
785 |
-
"loss": 0.0067,
|
786 |
-
"step": 1110
|
787 |
-
},
|
788 |
-
{
|
789 |
-
"epoch": 17.784,
|
790 |
-
"grad_norm": 0.22980810701847076,
|
791 |
-
"learning_rate": 4.408070965292534e-06,
|
792 |
-
"loss": 0.0053,
|
793 |
-
"step": 1120
|
794 |
-
},
|
795 |
-
{
|
796 |
-
"epoch": 17.944,
|
797 |
-
"grad_norm": 0.18192055821418762,
|
798 |
-
"learning_rate": 4.222802318077664e-06,
|
799 |
-
"loss": 0.0079,
|
800 |
-
"step": 1130
|
801 |
-
},
|
802 |
-
{
|
803 |
-
"epoch": 18.096,
|
804 |
-
"grad_norm": 0.6733874678611755,
|
805 |
-
"learning_rate": 4.040463553360431e-06,
|
806 |
-
"loss": 0.0039,
|
807 |
-
"step": 1140
|
808 |
-
},
|
809 |
-
{
|
810 |
-
"epoch": 18.256,
|
811 |
-
"grad_norm": 0.17421452701091766,
|
812 |
-
"learning_rate": 3.861147143509754e-06,
|
813 |
-
"loss": 0.0023,
|
814 |
-
"step": 1150
|
815 |
-
},
|
816 |
-
{
|
817 |
-
"epoch": 18.416,
|
818 |
-
"grad_norm": 0.15809208154678345,
|
819 |
-
"learning_rate": 3.6849440281194813e-06,
|
820 |
-
"loss": 0.006,
|
821 |
-
"step": 1160
|
822 |
-
},
|
823 |
-
{
|
824 |
-
"epoch": 18.576,
|
825 |
-
"grad_norm": 0.06922920793294907,
|
826 |
-
"learning_rate": 3.5119435678887328e-06,
|
827 |
-
"loss": 0.0023,
|
828 |
-
"step": 1170
|
829 |
-
},
|
830 |
-
{
|
831 |
-
"epoch": 18.736,
|
832 |
-
"grad_norm": 0.08193696290254593,
|
833 |
-
"learning_rate": 3.342233499302985e-06,
|
834 |
-
"loss": 0.003,
|
835 |
-
"step": 1180
|
836 |
-
},
|
837 |
-
{
|
838 |
-
"epoch": 18.896,
|
839 |
-
"grad_norm": 0.0757126435637474,
|
840 |
-
"learning_rate": 3.175899890138858e-06,
|
841 |
-
"loss": 0.002,
|
842 |
-
"step": 1190
|
843 |
-
},
|
844 |
-
{
|
845 |
-
"epoch": 19.048,
|
846 |
-
"grad_norm": 0.057399798184633255,
|
847 |
-
"learning_rate": 3.0130270958152196e-06,
|
848 |
-
"loss": 0.0022,
|
849 |
-
"step": 1200
|
850 |
-
},
|
851 |
-
{
|
852 |
-
"epoch": 19.208,
|
853 |
-
"grad_norm": 0.068113774061203,
|
854 |
-
"learning_rate": 2.8536977166126234e-06,
|
855 |
-
"loss": 0.0022,
|
856 |
-
"step": 1210
|
857 |
-
},
|
858 |
-
{
|
859 |
-
"epoch": 19.368,
|
860 |
-
"grad_norm": 0.06517008692026138,
|
861 |
-
"learning_rate": 2.697992555782969e-06,
|
862 |
-
"loss": 0.0016,
|
863 |
-
"step": 1220
|
864 |
-
},
|
865 |
-
{
|
866 |
-
"epoch": 19.528,
|
867 |
-
"grad_norm": 0.07533544301986694,
|
868 |
-
"learning_rate": 2.545990578570404e-06,
|
869 |
-
"loss": 0.0015,
|
870 |
-
"step": 1230
|
871 |
-
},
|
872 |
-
{
|
873 |
-
"epoch": 19.688,
|
874 |
-
"grad_norm": 0.08159100264310837,
|
875 |
-
"learning_rate": 2.397768872164462e-06,
|
876 |
-
"loss": 0.0018,
|
877 |
-
"step": 1240
|
878 |
-
},
|
879 |
-
{
|
880 |
-
"epoch": 19.848,
|
881 |
-
"grad_norm": 0.05212102085351944,
|
882 |
-
"learning_rate": 2.253402606605577e-06,
|
883 |
-
"loss": 0.0014,
|
884 |
-
"step": 1250
|
885 |
-
},
|
886 |
-
{
|
887 |
-
"epoch": 20.0,
|
888 |
-
"grad_norm": 0.038643430918455124,
|
889 |
-
"learning_rate": 2.1129649966629185e-06,
|
890 |
-
"loss": 0.0013,
|
891 |
-
"step": 1260
|
892 |
-
},
|
893 |
-
{
|
894 |
-
"epoch": 20.16,
|
895 |
-
"grad_norm": 0.040117453783750534,
|
896 |
-
"learning_rate": 1.9765272647038038e-06,
|
897 |
-
"loss": 0.0013,
|
898 |
-
"step": 1270
|
899 |
-
},
|
900 |
-
{
|
901 |
-
"epoch": 20.32,
|
902 |
-
"grad_norm": 0.03363404422998428,
|
903 |
-
"learning_rate": 1.8441586045735737e-06,
|
904 |
-
"loss": 0.0011,
|
905 |
-
"step": 1280
|
906 |
-
},
|
907 |
-
{
|
908 |
-
"epoch": 20.48,
|
909 |
-
"grad_norm": 0.055696483701467514,
|
910 |
-
"learning_rate": 1.7159261465041954e-06,
|
911 |
-
"loss": 0.0013,
|
912 |
-
"step": 1290
|
913 |
-
},
|
914 |
-
{
|
915 |
-
"epoch": 20.64,
|
916 |
-
"grad_norm": 0.0553043931722641,
|
917 |
-
"learning_rate": 1.5918949230694635e-06,
|
918 |
-
"loss": 0.0014,
|
919 |
-
"step": 1300
|
920 |
-
},
|
921 |
-
{
|
922 |
-
"epoch": 20.8,
|
923 |
-
"grad_norm": 0.049317434430122375,
|
924 |
-
"learning_rate": 1.4721278362039626e-06,
|
925 |
-
"loss": 0.0011,
|
926 |
-
"step": 1310
|
927 |
-
},
|
928 |
-
{
|
929 |
-
"epoch": 20.96,
|
930 |
-
"grad_norm": 0.07064161449670792,
|
931 |
-
"learning_rate": 1.356685625302625e-06,
|
932 |
-
"loss": 0.0012,
|
933 |
-
"step": 1320
|
934 |
-
},
|
935 |
-
{
|
936 |
-
"epoch": 21.112,
|
937 |
-
"grad_norm": 0.0384482778608799,
|
938 |
-
"learning_rate": 1.2456268364169853e-06,
|
939 |
-
"loss": 0.0011,
|
940 |
-
"step": 1330
|
941 |
-
},
|
942 |
-
{
|
943 |
-
"epoch": 21.272,
|
944 |
-
"grad_norm": 0.04504753276705742,
|
945 |
-
"learning_rate": 1.1390077925637865e-06,
|
946 |
-
"loss": 0.0011,
|
947 |
-
"step": 1340
|
948 |
-
},
|
949 |
-
{
|
950 |
-
"epoch": 21.432,
|
951 |
-
"grad_norm": 0.04046454280614853,
|
952 |
-
"learning_rate": 1.0368825651609893e-06,
|
953 |
-
"loss": 0.001,
|
954 |
-
"step": 1350
|
955 |
-
},
|
956 |
-
{
|
957 |
-
"epoch": 21.592,
|
958 |
-
"grad_norm": 0.04408493638038635,
|
959 |
-
"learning_rate": 9.393029466056714e-07,
|
960 |
-
"loss": 0.0012,
|
961 |
-
"step": 1360
|
962 |
-
},
|
963 |
-
{
|
964 |
-
"epoch": 21.752,
|
965 |
-
"grad_norm": 0.03646273910999298,
|
966 |
-
"learning_rate": 8.463184240077172e-07,
|
967 |
-
"loss": 0.0012,
|
968 |
-
"step": 1370
|
969 |
-
},
|
970 |
-
{
|
971 |
-
"epoch": 21.912,
|
972 |
-
"grad_norm": 0.03203440457582474,
|
973 |
-
"learning_rate": 7.579761540926434e-07,
|
974 |
-
"loss": 0.0011,
|
975 |
-
"step": 1380
|
976 |
-
},
|
977 |
-
{
|
978 |
-
"epoch": 22.064,
|
979 |
-
"grad_norm": 0.03588934242725372,
|
980 |
-
"learning_rate": 6.743209392862349e-07,
|
981 |
-
"loss": 0.001,
|
982 |
-
"step": 1390
|
983 |
-
},
|
984 |
-
{
|
985 |
-
"epoch": 22.224,
|
986 |
-
"grad_norm": 0.0342290997505188,
|
987 |
-
"learning_rate": 5.953952049931999e-07,
|
988 |
-
"loss": 0.0011,
|
989 |
-
"step": 1400
|
990 |
-
},
|
991 |
-
{
|
992 |
-
"epoch": 22.384,
|
993 |
-
"grad_norm": 0.036632440984249115,
|
994 |
-
"learning_rate": 5.212389780812733e-07,
|
995 |
-
"loss": 0.001,
|
996 |
-
"step": 1410
|
997 |
-
},
|
998 |
-
{
|
999 |
-
"epoch": 22.544,
|
1000 |
-
"grad_norm": 0.03759520500898361,
|
1001 |
-
"learning_rate": 4.518898665817695e-07,
|
1002 |
-
"loss": 0.0011,
|
1003 |
-
"step": 1420
|
1004 |
-
},
|
1005 |
-
{
|
1006 |
-
"epoch": 22.704,
|
1007 |
-
"grad_norm": 0.03835231438279152,
|
1008 |
-
"learning_rate": 3.8738304061681107e-07,
|
1009 |
-
"loss": 0.0011,
|
1010 |
-
"step": 1430
|
1011 |
-
},
|
1012 |
-
{
|
1013 |
-
"epoch": 22.864,
|
1014 |
-
"grad_norm": 0.042444001883268356,
|
1015 |
-
"learning_rate": 3.2775121456295024e-07,
|
1016 |
-
"loss": 0.0011,
|
1017 |
-
"step": 1440
|
1018 |
-
},
|
1019 |
-
{
|
1020 |
-
"epoch": 23.016,
|
1021 |
-
"grad_norm": 0.033434733748435974,
|
1022 |
-
"learning_rate": 2.730246304601991e-07,
|
1023 |
-
"loss": 0.001,
|
1024 |
-
"step": 1450
|
1025 |
-
},
|
1026 |
-
{
|
1027 |
-
"epoch": 23.176,
|
1028 |
-
"grad_norm": 0.03470597416162491,
|
1029 |
-
"learning_rate": 2.2323104267490404e-07,
|
1030 |
-
"loss": 0.0011,
|
1031 |
-
"step": 1460
|
1032 |
-
},
|
1033 |
-
{
|
1034 |
-
"epoch": 23.336,
|
1035 |
-
"grad_norm": 0.04532945156097412,
|
1036 |
-
"learning_rate": 1.783957038242279e-07,
|
1037 |
-
"loss": 0.001,
|
1038 |
-
"step": 1470
|
1039 |
-
},
|
1040 |
-
{
|
1041 |
-
"epoch": 23.496,
|
1042 |
-
"grad_norm": 0.035716019570827484,
|
1043 |
-
"learning_rate": 1.3854135196939345e-07,
|
1044 |
-
"loss": 0.001,
|
1045 |
-
"step": 1480
|
1046 |
-
},
|
1047 |
-
{
|
1048 |
-
"epoch": 23.656,
|
1049 |
-
"grad_norm": 0.03435162454843521,
|
1050 |
-
"learning_rate": 1.0368819908415983e-07,
|
1051 |
-
"loss": 0.0011,
|
1052 |
-
"step": 1490
|
1053 |
-
},
|
1054 |
-
{
|
1055 |
-
"epoch": 23.816,
|
1056 |
-
"grad_norm": 0.04788799211382866,
|
1057 |
-
"learning_rate": 7.385392080440535e-08,
|
1058 |
-
"loss": 0.0011,
|
1059 |
-
"step": 1500
|
1060 |
-
},
|
1061 |
-
{
|
1062 |
-
"epoch": 23.976,
|
1063 |
-
"grad_norm": 0.037617627531290054,
|
1064 |
-
"learning_rate": 4.905364746400021e-08,
|
1065 |
-
"loss": 0.0011,
|
1066 |
-
"step": 1510
|
1067 |
-
},
|
1068 |
-
{
|
1069 |
-
"epoch": 24.128,
|
1070 |
-
"grad_norm": 0.04006591811776161,
|
1071 |
-
"learning_rate": 2.929995642151906e-08,
|
1072 |
-
"loss": 0.001,
|
1073 |
-
"step": 1520
|
1074 |
-
},
|
1075 |
-
{
|
1076 |
-
"epoch": 24.288,
|
1077 |
-
"grad_norm": 0.03150051832199097,
|
1078 |
-
"learning_rate": 1.4602865681682122e-08,
|
1079 |
-
"loss": 0.001,
|
1080 |
-
"step": 1530
|
1081 |
-
},
|
1082 |
-
{
|
1083 |
-
"epoch": 24.448,
|
1084 |
-
"grad_norm": 0.04720960184931755,
|
1085 |
-
"learning_rate": 4.969828814767042e-09,
|
1086 |
-
"loss": 0.001,
|
1087 |
-
"step": 1540
|
1088 |
-
},
|
1089 |
-
{
|
1090 |
-
"epoch": 24.608,
|
1091 |
-
"grad_norm": 0.0407867431640625,
|
1092 |
-
"learning_rate": 4.0573117655595684e-10,
|
1093 |
-
"loss": 0.001,
|
1094 |
-
"step": 1550
|
1095 |
-
},
|
1096 |
-
{
|
1097 |
-
"epoch": 24.608,
|
1098 |
-
"step": 1550,
|
1099 |
-
"total_flos": 1.324081921088553e+17,
|
1100 |
-
"train_loss": 0.672794044127147,
|
1101 |
-
"train_runtime": 33908.1665,
|
1102 |
-
"train_samples_per_second": 0.369,
|
1103 |
-
"train_steps_per_second": 0.046
|
1104 |
}
|
1105 |
],
|
1106 |
"logging_steps": 10,
|
1107 |
-
"max_steps":
|
1108 |
"num_input_tokens_seen": 0,
|
1109 |
-
"num_train_epochs":
|
1110 |
"save_steps": 1000,
|
1111 |
"stateful_callbacks": {
|
1112 |
"TrainerControl": {
|
@@ -1120,8 +357,8 @@
|
|
1120 |
"attributes": {}
|
1121 |
}
|
1122 |
},
|
1123 |
-
"total_flos": 1.
|
1124 |
-
"train_batch_size":
|
1125 |
"trial_name": null,
|
1126 |
"trial_params": null
|
1127 |
}
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 14.544,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 465,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
+
"epoch": 0.32,
|
13 |
+
"grad_norm": 72.67546081542969,
|
14 |
+
"learning_rate": 3.8297872340425535e-06,
|
15 |
+
"loss": 10.0348,
|
16 |
"step": 10
|
17 |
},
|
18 |
{
|
19 |
+
"epoch": 0.64,
|
20 |
+
"grad_norm": 41.243839263916016,
|
21 |
+
"learning_rate": 8.085106382978723e-06,
|
22 |
+
"loss": 4.7312,
|
23 |
"step": 20
|
24 |
},
|
25 |
{
|
26 |
+
"epoch": 0.96,
|
27 |
+
"grad_norm": 34.776241302490234,
|
28 |
+
"learning_rate": 1.2340425531914895e-05,
|
29 |
+
"loss": 3.4362,
|
30 |
"step": 30
|
31 |
},
|
32 |
{
|
33 |
+
"epoch": 1.256,
|
34 |
+
"grad_norm": 12.210166931152344,
|
35 |
+
"learning_rate": 1.6595744680851064e-05,
|
36 |
+
"loss": 2.5739,
|
37 |
"step": 40
|
38 |
},
|
39 |
{
|
40 |
+
"epoch": 1.576,
|
41 |
+
"grad_norm": 11.936144828796387,
|
42 |
+
"learning_rate": 1.9998870284726968e-05,
|
43 |
+
"loss": 2.4828,
|
44 |
"step": 50
|
45 |
},
|
46 |
{
|
47 |
+
"epoch": 1.896,
|
48 |
+
"grad_norm": 5.305131912231445,
|
49 |
+
"learning_rate": 1.9959357045100764e-05,
|
50 |
+
"loss": 2.1904,
|
51 |
"step": 60
|
52 |
},
|
53 |
{
|
54 |
+
"epoch": 2.192,
|
55 |
+
"grad_norm": 6.481784820556641,
|
56 |
+
"learning_rate": 1.9863613034027224e-05,
|
57 |
+
"loss": 1.893,
|
58 |
"step": 70
|
59 |
},
|
60 |
{
|
61 |
+
"epoch": 2.512,
|
62 |
+
"grad_norm": 2.9933059215545654,
|
63 |
+
"learning_rate": 1.971217882451521e-05,
|
64 |
+
"loss": 1.9328,
|
65 |
"step": 80
|
66 |
},
|
67 |
{
|
68 |
+
"epoch": 2.832,
|
69 |
+
"grad_norm": 5.0720906257629395,
|
70 |
+
"learning_rate": 1.9505909417784758e-05,
|
71 |
+
"loss": 1.8361,
|
72 |
"step": 90
|
73 |
},
|
74 |
{
|
75 |
+
"epoch": 3.128,
|
76 |
+
"grad_norm": 4.453537940979004,
|
77 |
+
"learning_rate": 1.9245969415909464e-05,
|
78 |
+
"loss": 1.6677,
|
79 |
"step": 100
|
80 |
},
|
81 |
{
|
82 |
+
"epoch": 3.448,
|
83 |
+
"grad_norm": 3.9254183769226074,
|
84 |
+
"learning_rate": 1.8933826446444933e-05,
|
85 |
+
"loss": 1.7492,
|
86 |
"step": 110
|
87 |
},
|
88 |
{
|
89 |
+
"epoch": 3.768,
|
90 |
+
"grad_norm": 2.421752691268921,
|
91 |
+
"learning_rate": 1.8571242876167995e-05,
|
92 |
+
"loss": 1.6435,
|
93 |
"step": 120
|
94 |
},
|
95 |
{
|
96 |
+
"epoch": 4.064,
|
97 |
+
"grad_norm": 3.5012094974517822,
|
98 |
+
"learning_rate": 1.8160265860711134e-05,
|
99 |
+
"loss": 1.478,
|
100 |
"step": 130
|
101 |
},
|
102 |
{
|
103 |
+
"epoch": 4.384,
|
104 |
+
"grad_norm": 4.192974090576172,
|
105 |
+
"learning_rate": 1.770321578627213e-05,
|
106 |
+
"loss": 1.4807,
|
107 |
"step": 140
|
108 |
},
|
109 |
{
|
110 |
+
"epoch": 4.704,
|
111 |
+
"grad_norm": 2.528031826019287,
|
112 |
+
"learning_rate": 1.7202673168657318e-05,
|
113 |
+
"loss": 1.375,
|
114 |
"step": 150
|
115 |
},
|
116 |
{
|
117 |
+
"epoch": 5.0,
|
118 |
+
"grad_norm": 1.0680221319198608,
|
119 |
+
"learning_rate": 1.6661464083626734e-05,
|
120 |
+
"loss": 1.2751,
|
121 |
"step": 160
|
122 |
},
|
123 |
{
|
124 |
+
"epoch": 5.32,
|
125 |
+
"grad_norm": 2.499868392944336,
|
126 |
+
"learning_rate": 1.6082644210801846e-05,
|
127 |
+
"loss": 1.2887,
|
128 |
"step": 170
|
129 |
},
|
130 |
{
|
131 |
+
"epoch": 5.64,
|
132 |
+
"grad_norm": 2.785773754119873,
|
133 |
+
"learning_rate": 1.5469481581224274e-05,
|
134 |
+
"loss": 1.2852,
|
135 |
"step": 180
|
136 |
},
|
137 |
{
|
138 |
+
"epoch": 5.96,
|
139 |
+
"grad_norm": 2.820884943008423,
|
140 |
+
"learning_rate": 1.4825438125973263e-05,
|
141 |
+
"loss": 1.2329,
|
142 |
"step": 190
|
143 |
},
|
144 |
{
|
145 |
+
"epoch": 6.256,
|
146 |
+
"grad_norm": 2.5425021648406982,
|
147 |
+
"learning_rate": 1.4154150130018867e-05,
|
148 |
+
"loss": 1.1001,
|
149 |
"step": 200
|
150 |
},
|
151 |
{
|
152 |
+
"epoch": 6.576,
|
153 |
+
"grad_norm": 2.7974514961242676,
|
154 |
+
"learning_rate": 1.3459407701668762e-05,
|
155 |
+
"loss": 1.1543,
|
156 |
"step": 210
|
157 |
},
|
158 |
{
|
159 |
+
"epoch": 6.896,
|
160 |
+
"grad_norm": 2.438002586364746,
|
161 |
+
"learning_rate": 1.2745133373524855e-05,
|
162 |
+
"loss": 1.132,
|
163 |
"step": 220
|
164 |
},
|
165 |
{
|
166 |
+
"epoch": 7.192,
|
167 |
+
"grad_norm": 2.9781107902526855,
|
168 |
+
"learning_rate": 1.2015359955769021e-05,
|
169 |
+
"loss": 1.0284,
|
170 |
"step": 230
|
171 |
},
|
172 |
{
|
173 |
+
"epoch": 7.5120000000000005,
|
174 |
+
"grad_norm": 3.271495819091797,
|
175 |
+
"learning_rate": 1.127420776681905e-05,
|
176 |
+
"loss": 1.0392,
|
177 |
"step": 240
|
178 |
},
|
179 |
{
|
180 |
+
"epoch": 7.832,
|
181 |
+
"grad_norm": 3.1173477172851562,
|
182 |
+
"learning_rate": 1.0525861369910877e-05,
|
183 |
+
"loss": 1.0436,
|
184 |
"step": 250
|
185 |
},
|
186 |
{
|
187 |
+
"epoch": 8.128,
|
188 |
+
"grad_norm": 2.84490704536438,
|
189 |
+
"learning_rate": 9.77454594695308e-06,
|
190 |
+
"loss": 0.8973,
|
191 |
"step": 260
|
192 |
},
|
193 |
{
|
194 |
+
"epoch": 8.448,
|
195 |
+
"grad_norm": 3.3770253658294678,
|
196 |
+
"learning_rate": 9.024503443047318e-06,
|
197 |
+
"loss": 0.9455,
|
198 |
"step": 270
|
199 |
},
|
200 |
{
|
201 |
+
"epoch": 8.768,
|
202 |
+
"grad_norm": 3.168492317199707,
|
203 |
+
"learning_rate": 8.279968616363417e-06,
|
204 |
+
"loss": 0.9297,
|
205 |
"step": 280
|
206 |
},
|
207 |
{
|
208 |
+
"epoch": 9.064,
|
209 |
+
"grad_norm": 3.5850722789764404,
|
210 |
+
"learning_rate": 7.545145128592009e-06,
|
211 |
+
"loss": 0.8414,
|
212 |
"step": 290
|
213 |
},
|
214 |
{
|
215 |
+
"epoch": 9.384,
|
216 |
+
"grad_norm": 2.5484402179718018,
|
217 |
+
"learning_rate": 6.824181810968675e-06,
|
218 |
+
"loss": 0.8513,
|
219 |
"step": 300
|
220 |
},
|
221 |
{
|
222 |
+
"epoch": 9.704,
|
223 |
+
"grad_norm": 3.354924201965332,
|
224 |
+
"learning_rate": 6.121149239872151e-06,
|
225 |
+
"loss": 0.8351,
|
226 |
"step": 310
|
227 |
},
|
228 |
{
|
229 |
+
"epoch": 10.0,
|
230 |
+
"grad_norm": 1.4634054899215698,
|
231 |
+
"learning_rate": 5.440016754251364e-06,
|
232 |
+
"loss": 0.7886,
|
233 |
"step": 320
|
234 |
},
|
235 |
{
|
236 |
+
"epoch": 10.32,
|
237 |
+
"grad_norm": 3.3187077045440674,
|
238 |
+
"learning_rate": 4.784630044641435e-06,
|
239 |
+
"loss": 0.7832,
|
240 |
"step": 330
|
241 |
},
|
242 |
{
|
243 |
+
"epoch": 10.64,
|
244 |
+
"grad_norm": 2.827324390411377,
|
245 |
+
"learning_rate": 4.1586894403016576e-06,
|
246 |
+
"loss": 0.7555,
|
247 |
"step": 340
|
248 |
},
|
249 |
{
|
250 |
+
"epoch": 10.96,
|
251 |
+
"grad_norm": 2.74627685546875,
|
252 |
+
"learning_rate": 3.565729017066729e-06,
|
253 |
+
"loss": 0.7529,
|
254 |
"step": 350
|
255 |
},
|
256 |
{
|
257 |
+
"epoch": 11.256,
|
258 |
+
"grad_norm": 2.8250672817230225,
|
259 |
+
"learning_rate": 3.0090966438688774e-06,
|
260 |
+
"loss": 0.6507,
|
261 |
"step": 360
|
262 |
},
|
263 |
{
|
264 |
+
"epoch": 11.576,
|
265 |
+
"grad_norm": 3.070279359817505,
|
266 |
+
"learning_rate": 2.491935080588658e-06,
|
267 |
+
"loss": 0.7048,
|
268 |
"step": 370
|
269 |
},
|
270 |
{
|
271 |
+
"epoch": 11.896,
|
272 |
+
"grad_norm": 2.929745674133301,
|
273 |
+
"learning_rate": 2.01716423395644e-06,
|
274 |
+
"loss": 0.6911,
|
275 |
"step": 380
|
276 |
},
|
277 |
{
|
278 |
+
"epoch": 12.192,
|
279 |
+
"grad_norm": 2.552579879760742,
|
280 |
+
"learning_rate": 1.587464671688187e-06,
|
281 |
+
"loss": 0.6039,
|
282 |
"step": 390
|
283 |
},
|
284 |
{
|
285 |
+
"epoch": 12.512,
|
286 |
+
"grad_norm": 2.608180046081543,
|
287 |
+
"learning_rate": 1.2052624879351105e-06,
|
288 |
+
"loss": 0.6456,
|
289 |
"step": 400
|
290 |
},
|
291 |
{
|
292 |
+
"epoch": 12.832,
|
293 |
+
"grad_norm": 2.6534199714660645,
|
294 |
+
"learning_rate": 8.727156054972374e-07,
|
295 |
+
"loss": 0.6479,
|
296 |
"step": 410
|
297 |
},
|
298 |
{
|
299 |
+
"epoch": 13.128,
|
300 |
+
"grad_norm": 2.4939088821411133,
|
301 |
+
"learning_rate": 5.917015921389569e-07,
|
302 |
+
"loss": 0.6013,
|
303 |
"step": 420
|
304 |
},
|
305 |
{
|
306 |
+
"epoch": 13.448,
|
307 |
+
"grad_norm": 2.7369675636291504,
|
308 |
+
"learning_rate": 3.638070597958665e-07,
|
309 |
+
"loss": 0.6168,
|
310 |
"step": 430
|
311 |
},
|
312 |
{
|
313 |
+
"epoch": 13.768,
|
314 |
+
"grad_norm": 2.4181711673736572,
|
315 |
+
"learning_rate": 1.903187065253076e-07,
|
316 |
+
"loss": 0.6093,
|
317 |
"step": 440
|
318 |
},
|
319 |
{
|
320 |
+
"epoch": 14.064,
|
321 |
+
"grad_norm": 2.7222864627838135,
|
322 |
+
"learning_rate": 7.22160517779169e-08,
|
323 |
+
"loss": 0.5911,
|
324 |
"step": 450
|
325 |
},
|
326 |
{
|
327 |
+
"epoch": 14.384,
|
328 |
+
"grad_norm": 2.8161678314208984,
|
329 |
+
"learning_rate": 1.0165906007056914e-08,
|
330 |
+
"loss": 0.6135,
|
331 |
"step": 460
|
332 |
},
|
333 |
{
|
334 |
+
"epoch": 14.544,
|
335 |
+
"step": 465,
|
336 |
+
"total_flos": 1.565274744469586e+17,
|
337 |
+
"train_loss": 1.4569768874875961,
|
338 |
+
"train_runtime": 22995.3507,
|
339 |
+
"train_samples_per_second": 0.652,
|
340 |
+
"train_steps_per_second": 0.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
}
|
342 |
],
|
343 |
"logging_steps": 10,
|
344 |
+
"max_steps": 465,
|
345 |
"num_input_tokens_seen": 0,
|
346 |
+
"num_train_epochs": 15,
|
347 |
"save_steps": 1000,
|
348 |
"stateful_callbacks": {
|
349 |
"TrainerControl": {
|
|
|
357 |
"attributes": {}
|
358 |
}
|
359 |
},
|
360 |
+
"total_flos": 1.565274744469586e+17,
|
361 |
+
"train_batch_size": 4,
|
362 |
"trial_name": null,
|
363 |
"trial_params": null
|
364 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5688
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7965a2214104df656922b1be16c3a7c2b84d436985ed36667de02fc406d2a34b
|
3 |
size 5688
|