ppo-LunarLander-v2-1 / config.json
saikiranp's picture
Upload PPO LunarLander-v2 trained agent tutorial
8f9da9c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec8ccdcca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec8ccdcd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec8ccdcdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec8ccdce50>", "_build": "<function ActorCriticPolicy._build at 0x7fec8ccdcee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fec8ccdcf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec8cce0040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fec8cce00d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec8cce0160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec8cce01f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec8cce0280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fec8ccd94b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2097152, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671518622242251658, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAABCXVr56wTO9fe8bvjqwA77C9WQ+NP2UPQAAgD8AAIA/AEZbPCkQTLp+5r+891cVvF+nFDrkrwK9AAAAAAAAgD9mfq48e1S4uu0rgzolAoi2EXUAu24TlbkAAIA/AACAP2YObLzhWIy6bR9Qua3nSrZed4g7S71uOAAAgD8AAIA/2sykvUG22T5uP8g9juC0vgRKub0afYg9AAAAAAAAAABzRpS9LwpEP73/1ryL9f2+ezdZvX5iMbwAAAAAAAAAAJpzCj32zDC6mqnGu7HLebZvE1E68ufdNQAAgD8AAIA/pnLWvXt2jbpTb8K60OrMszQBuzqgORszAACAPwAAgD8zFda+NWfNvf7/sbs3uZu5ZmMhPQaN07sAAIA/AACAP83ksrsp0Cu61cjvu8WGMDzs89S5YPYavQAAgD8AAIA/5ulpvZnumT/1rSS+2TQPv0YJdb2g5JW9AAAAAAAAAACaJbI99rROultNgzvZjNe4ZZf+OUKbkLkAAIA/AACAP9qksT2F26u58P5zOkcSxbyJyIW758meuwAAAAAAAAAAWtiePQZ48T7PYBi+bjOnvnhCvz2KprC9AAAAAAAAAACAD2S99jgYOYLDrzzDUd07MQ+QOzl8FL0AAAAAAACAP0A1g72x6aU/K/3Pvo+P+75r6T+97nIivgAAAAAAAAAAzfrEvD27DrvjygI9NDYyvREtkLxi8Bq+AACAPwAAgD/N++E8cl+DPk1HaLjD8mm+yEEKPdayez0AAAAAAAAAAFoYgz3suYe5TgJevMSHLr1paZC7GBwEPQAAAAAAAAAAM064vMO6U7xees68CoELPbeov73I3Nw9AACAPwAAgD8AI/w8hbOUucKX/blEvna0jWYJurQRFjkAAIA/AACAP2b24Lz2WAu6pgVyu8tk47a+9W47fkWOOgAAgD8AAIA/ZkbxOq6vvzmR4i66UYkvvIirQ7pjOQy8AAAAAAAAAACm+9E94fqfN+eIvbv2Nw89XfrYOmJ0mjoAAIA/AACAP/ahiL4KM0w8TQJqvXKRK74QfwS+EqUVPQAAgD8AAAAAmkm7Ovb0ILqWZXu8uQGfuUtVSbmcpxE5AACAPwAAgD+aXEe9pExXOq43fTvtQQw9AateOqBYajsAAIA/AACAP02KGj24Rqi5w9Fou2+m07vBz766fCe6PAAAgD8AAIA/ZqoxPVyrFboiflU8OkfEt5sa7rlmW7q2AACAPwAAgD9mnB+9nJhrPXATbzvxkpi+64+OvZnDKT0AAAAAAAAAAJpd9ryuA+a6t3GNvJE+wLydGtU7fiinPQAAgD8AAIA/ADmfPPbcKbpoFp054pPAuZFnULq4MT64AACAPwAAgD9zFak9XBshul+WHLvhyAk9Bq9iuk2l6r0AAIA/AACAP4tk275yEeu90DaeuQtvsrf58sQ5sBnWuQAAgD8AAIA/mpF3va7HjzfzgrW8qeMgvC6+l7vsJA09AACAPwAAAACajrG8j/IHORompjn/dOw1p1/Ouq4p7jQAAIA/AACAP7OwXj0prHm62mtQPB5/PDyRDw47lFwmvQAAgD8AAIA/gCWNPXs0rDm0pIq8J/EUPTdbLTu+RAA8AACAPwAAgD+Axyq9HxX0udKBjzux8Fa5VVKeO8NgYLoAAIA/AACAPzPtsTzXw3u5Q+PwuzpFvzgKHxw8zobANwAAgD8AAIA/elIiPoXjuLu5tAE7ylyBubUWT70nryC6AACAPwAAgD8a93W9H1XVuTAs0TjACNk1zJUdO5VO97cAAIA/AACAP0ZLKj/nrXm+NtX0PHURqLzPR7Q+xgKbvQAAAAAAAIA/AErMveGahrg1OG07LT11Ng3YILkeYIy6AACAPwAAgD+Nu7a9P9C1Pw6zbL55H9y+o7iVvdgShr0AAAAAAAAAABpLer1sbfa7XcduvIVi3jy7eEA9+Xa6vQAAgD8AAIA/ZsnEvY/yCLrMrpa7vHBCtn97B7s9wa06AACAPwAAgD9mJ6i+20D4PnZmVj7i6pW+v08IvG78mz0AAAAAAAAAAGZhTr32yEO6cAOhO7JCEzkXe587qQE5ugAAgD8AAIA/QJ/yvbiXxrvO0A0+AuInvBE0ALyakEU+AACAPwAAgD8ahU8+z4ATvOEByTuzZQE9YTiLvX4NI7oAAIA/AACAP2bgtjzsed+5rn9nu8e/uTaITdW65xAotgAAgD8AAIA/DfGSPcP5L7o1Y4e5BnGdtceZRrra25s4AACAPwAAgD+aaoW9jx4HumjuXjsB6eA3BPeUueJ7TTYAAIA/AACAP2B4Dj9c+oS+ee0YPy0UAb2l9PO+KwkZPgAAgD8AAAAAJpPFvQ/UDbwCidE+Sl1Yvmbsbr1wjDm/AACAPwAAAADad8Q94VqcuoMjTLumqJk2Ewn1uovsazoAAIA/AACAPzY4kL5vXJE+cmtnPgwmjL4jUyq+4NdHPgAAAAAAAAAAmvdxvKQAZbnw7eg7rLD0N4IZAjh+N8s2AACAPwAAgD8zyRU9rsGLuipF0ThHY0m29q1CulUG6rcAAIA/AACAP5pdMD32HF+60CufuwXCrDefQM86jmmJtgAAgD8AAIA/06EfvoUTkrsjtEO8VtsAvf0FAD14C909AACAPwAAAAAAM6u8HR3iPscEl7wwwt2+80OEvR7nHD0AAAAAAAAAAJpZcr17hIY5xRxNPEOj27vzMDO7GuzAPAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu7iNBnDEY0CUhpRSlIwBbJRN6AOMAXSUR0Cak237k4m1dX2UKGgGaAloD0MI7mDEPgGPXECUhpRSlGgVTegDaBZHQJqUJ7ojfN11fZQoaAZoCWgPQwg/jubIympbQJSGlFKUaBVN6ANoFkdAmpaKD0163XV9lChoBmgJaA9DCHmthO6SQmJAlIaUUpRoFU3oA2gWR0CalsuB+WnkdX2UKGgGaAloD0MIwVJdwMs5XECUhpRSlGgVTegDaBZHQJqYsFKTSst1fZQoaAZoCWgPQwhJoMGmznBbQJSGlFKUaBVN6ANoFkdAmprGYnfEXXV9lChoBmgJaA9DCFw9J73v42NAlIaUUpRoFU3oA2gWR0CaqdvFm4AkdX2UKGgGaAloD0MIwxGkUuygTkCUhpRSlGgVS7loFkdAmqrLX+VC5XV9lChoBmgJaA9DCN8ZbVWSd2FAlIaUUpRoFU3oA2gWR0CarZ9qk/KRdX2UKGgGaAloD0MIca32sJcrYECUhpRSlGgVTegDaBZHQJqt8DSw4bV1fZQoaAZoCWgPQwhvZvSj4SFYQJSGlFKUaBVN6ANoFkdAmrLb4BV+7XV9lChoBmgJaA9DCOny5nCtFVxAlIaUUpRoFU3oA2gWR0Cas1rupjtpdX2UKGgGaAloD0MIHmtGBrkcVECUhpRSlGgVTegDaBZHQJq2W37UG3Z1fZQoaAZoCWgPQwigiEUMO2ZcQJSGlFKUaBVN6ANoFkdAmrljMaCL/HV9lChoBmgJaA9DCNMzvcRYgl5AlIaUUpRoFU3oA2gWR0CavLme18b8dX2UKGgGaAloD0MIpgpGJfVcYUCUhpRSlGgVTegDaBZHQJrAU8YAKfF1fZQoaAZoCWgPQwjY0qOpnspfQJSGlFKUaBVN6ANoFkdAmsDMcIZ62XV9lChoBmgJaA9DCOwy/Kcb8F5AlIaUUpRoFU3oA2gWR0CawXoDPnjidX2UKGgGaAloD0MIv0aSINwlYUCUhpRSlGgVTegDaBZHQJrF/xwyZa51fZQoaAZoCWgPQwhbXOMz2bZgQJSGlFKUaBVN6ANoFkdAmsfsJIDoyXV9lChoBmgJaA9DCD0MrU7OBWJAlIaUUpRoFU3oA2gWR0CaypVu76HkdX2UKGgGaAloD0MIsHCS5o+eWkCUhpRSlGgVTegDaBZHQJrN5VFQVKx1fZQoaAZoCWgPQwhDGhU42XtZQJSGlFKUaBVN6ANoFkdAmtCk+kgwGnV9lChoBmgJaA9DCHkkXp7OOFlAlIaUUpRoFU3oA2gWR0Ca0YBKtga4dX2UKGgGaAloD0MIw9MrZZk+Y0CUhpRSlGgVTegDaBZHQJrSxwVCXyB1fZQoaAZoCWgPQwg1RuuoavBeQJSGlFKUaBVN6ANoFkdAmtPSBbwBo3V9lChoBmgJaA9DCLg+rDdqITRAlIaUUpRoFUu5aBZHQJrXsZk078x1fZQoaAZoCWgPQwghyEEJM1FbQJSGlFKUaBVN6ANoFkdAmt3HZPEbYXV9lChoBmgJaA9DCFCLwcM0HWVAlIaUUpRoFU3oA2gWR0Ca3/vzvqkedX2UKGgGaAloD0MI3QiLijj1XUCUhpRSlGgVTegDaBZHQJriwd0aIep1fZQoaAZoCWgPQwjFdYwrLvxiQJSGlFKUaBVN6ANoFkdAmvXN0V8CxXV9lChoBmgJaA9DCDxnCwitSFlAlIaUUpRoFU3oA2gWR0Ca97Zi/fwadX2UKGgGaAloD0MI422l12baXECUhpRSlGgVTegDaBZHQJr7X8iwB5p1fZQoaAZoCWgPQwisGRnkLmRhQJSGlFKUaBVN6ANoFkdAmvwquW8h93V9lChoBmgJaA9DCDW1bK2vAmFAlIaUUpRoFU3oA2gWR0CbAdOp84PxdX2UKGgGaAloD0MID0WBPpE1XECUhpRSlGgVTegDaBZHQJsC24XoC+11fZQoaAZoCWgPQwjcR25NOn1iQJSGlFKUaBVN6ANoFkdAmwr4mTkhinV9lChoBmgJaA9DCJJe1O5XBWNAlIaUUpRoFU3oA2gWR0CbFM1fVqetdX2UKGgGaAloD0MIa/KU1fTUYkCUhpRSlGgVTegDaBZHQJsda+De0ol1fZQoaAZoCWgPQwgkfzDw3O1iQJSGlFKUaBVN6ANoFkdAmx43VG0/nnV9lChoBmgJaA9DCNdqD3uhEktAlIaUUpRoFUueaBZHQJsiyK508vF1fZQoaAZoCWgPQwjyDBr6Jw5hQJSGlFKUaBVN6ANoFkdAmyUVmBe5WnV9lChoBmgJaA9DCGoTJ/c7SV9AlIaUUpRoFU3oA2gWR0CbJ9q6vq1PdX2UKGgGaAloD0MIzoqoiT7HUkCUhpRSlGgVTegDaBZHQJssH+WGATZ1fZQoaAZoCWgPQwhg56bNOPJVQJSGlFKUaBVN6ANoFkdAmy0YfnwG4nV9lChoBmgJaA9DCH+jHTf82l5AlIaUUpRoFU3oA2gWR0CbL1itq59WdX2UKGgGaAloD0MI7WXbaetDYUCUhpRSlGgVTegDaBZHQJswT3Cbc451fZQoaAZoCWgPQwi6hhkaT/ZeQJSGlFKUaBVN6ANoFkdAmzqaUA1ejXV9lChoBmgJaA9DCAHBHD1+TmBAlIaUUpRoFU3oA2gWR0CbSILhrFfidX2UKGgGaAloD0MI0R4vpMOJYECUhpRSlGgVTegDaBZHQJtKE2hqTKV1fZQoaAZoCWgPQwhN845TdGA/QJSGlFKUaBVLsmgWR0CbSupI+W4WdX2UKGgGaAloD0MIXfqXpDK+XkCUhpRSlGgVTegDaBZHQJtPpU3n6mB1fZQoaAZoCWgPQwhos+pztdZhQJSGlFKUaBVN6ANoFkdAm1DIexOclXV9lChoBmgJaA9DCF653jbT/2JAlIaUUpRoFU3oA2gWR0CbUXJ2+wkgdX2UKGgGaAloD0MIGjIepRLoRUCUhpRSlGgVTegDaBZHQJtU71VYISl1fZQoaAZoCWgPQwhGfZI7bB9hQJSGlFKUaBVN6ANoFkdAm1e45PuXu3V9lChoBmgJaA9DCO+s3Xah2lpAlIaUUpRoFU3oA2gWR0CbZqf9xZMddX2UKGgGaAloD0MI9x+ZDh1xYECUhpRSlGgVTegDaBZHQJtoOpOvdM11fZQoaAZoCWgPQwjFA8qmXMVeQJSGlFKUaBVN6ANoFkdAm2xULpiZv3V9lChoBmgJaA9DCMQ/bOnRxV9AlIaUUpRoFU3oA2gWR0CbbU9OARTTdX2UKGgGaAloD0MIYYxIFFoETUCUhpRSlGgVTegDaBZHQJtwTI+4b0h1fZQoaAZoCWgPQwi6umOxTThdwJSGlFKUaBVNjgJoFkdAm3Kie7L+xXV9lChoBmgJaA9DCPMeZ5qw3lpAlIaUUpRoFU3oA2gWR0Cbc1faYeDGdX2UKGgGaAloD0MIgT0mUppJY0CUhpRSlGgVTegDaBZHQJt34nNPgvV1fZQoaAZoCWgPQwgv+Z/8XchjQJSGlFKUaBVN6ANoFkdAm3maMFUyYXV9lChoBmgJaA9DCAABa9Uu9WRAlIaUUpRoFU3oA2gWR0CbfGscyWRjdX2UKGgGaAloD0MIZXJqZ5ikSkCUhpRSlGgVS7BoFkdAm4OZXp4bCXV9lChoBmgJaA9DCFotsMfEymJAlIaUUpRoFU3oA2gWR0CbhBzYEnstdX2UKGgGaAloD0MIQtKnVXSKYECUhpRSlGgVTegDaBZHQJuEVVzZHut1fZQoaAZoCWgPQwgCnUmbKvphQJSGlFKUaBVN6ANoFkdAm4Red9Ujs3V9lChoBmgJaA9DCAUZARWOvEZAlIaUUpRoFUt5aBZHQJuEZqTKT0R1fZQoaAZoCWgPQwgdWmQ73zViQJSGlFKUaBVN6ANoFkdAm4UNSydFv3V9lChoBmgJaA9DCI7qdCDrB2JAlIaUUpRoFU3oA2gWR0CbhyoSteUqdX2UKGgGaAloD0MIoYFYNnNXVECUhpRSlGgVTegDaBZHQJuHa3Sa3JB1fZQoaAZoCWgPQwgSwTi49LBjQJSGlFKUaBVN6ANoFkdAm4kpKzzErHV9lChoBmgJaA9DCFCqfToepVtAlIaUUpRoFU3oA2gWR0Cbiy8ox59mdX2UKGgGaAloD0MIJ4QOuoR5YECUhpRSlGgVTegDaBZHQJuZye5Fw1l1fZQoaAZoCWgPQwhyp3Sw/vxYQJSGlFKUaBVN6ANoFkdAm5qy5iExqXV9lChoBmgJaA9DCJHUQsnk1EVAlIaUUpRoFUvYaBZHQJubOSZBsyl1fZQoaAZoCWgPQwhbJy7HK6FkQJSGlFKUaBVN6ANoFkdAm52+JYT0x3V9lChoBmgJaA9DCCkF3V7SMFxAlIaUUpRoFU3oA2gWR0CbooAHVwxWdX2UKGgGaAloD0MIlX1XBP92X0CUhpRSlGgVTegDaBZHQJui+9FnZkF1fZQoaAZoCWgPQwhO7+L9uGtfQJSGlFKUaBVN6ANoFkdAm6Xsny/bkHV9lChoBmgJaA9DCHy0OGMY6mFAlIaUUpRoFU3oA2gWR0CbqPcWj45+dX2UKGgGaAloD0MIGTkLe9o5QECUhpRSlGgVS65oFkdAm6s6x9oexXV9lChoBmgJaA9DCAot6/6xs2NAlIaUUpRoFU3oA2gWR0CbrDk7fYSQdX2UKGgGaAloD0MIxZEHIgulYkCUhpRSlGgVTegDaBZHQJuvlrgwXZZ1fZQoaAZoCWgPQwgi4BCq1AwxQJSGlFKUaBVN6ANoFkdAm7ATQVsUI3V9lChoBmgJaA9DCKjknNhDO1xAlIaUUpRoFU3oA2gWR0CbsMBbwBo3dX2UKGgGaAloD0MIOdIZGHmDXUCUhpRSlGgVTegDaBZHQJu1Q1YQrc11fZQoaAZoCWgPQwhy+KQTCf1eQJSGlFKUaBVN6ANoFkdAm7dCjQAuI3V9lChoBmgJaA9DCBpqFJLMIl1AlIaUUpRoFU3oA2gWR0Cbuc+Vkc0cdX2UKGgGaAloD0MIeSCySBOuY0CUhpRSlGgVTegDaBZHQJu9Nhz/6wd1fZQoaAZoCWgPQwiB0eXNYShiQJSGlFKUaBVN6ANoFkdAm8A2XHBDX3V9lChoBmgJaA9DCITVWMLakV5AlIaUUpRoFU3oA2gWR0CbwReTFERbdX2UKGgGaAloD0MI+iZNg6IeYUCUhpRSlGgVTegDaBZHQJvDi2kSElF1fZQoaAZoCWgPQwh+HM2RlbNfQJSGlFKUaBVN6ANoFkdAm8fABT4tYnV9lChoBmgJaA9DCL2OOGQDWVVAlIaUUpRoFU3oA2gWR0Cbzq6iCaqkdX2UKGgGaAloD0MIwAZEiKtTYUCUhpRSlGgVTegDaBZHQJvQ80DU3GZ1fZQoaAZoCWgPQwhKfy+FB1JYQJSGlFKUaBVN6ANoFkdAm9P1tCRfW3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 64, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/wzMzMzMzM4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}