First training of PandaReachDense-v2
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.49 +/- 0.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ffe9b5ef95ea5f2defc3c2576d7273d93224e255a2a648324d4eb84a3e8ed55
|
3 |
+
size 108095
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f984bd66ca0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f984bd619f0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1673980303695114639,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAn8DPPtDD1DyLpyA/n8DPPtDD1DyLpyA/n8DPPtDD1DyLpyA/n8DPPtDD1DyLpyA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIam9Pxa92D64OTq++SODv5XkfD/B8b0/hpYcP7t/OT91VCi/Wmg3P/dZr78vn3K/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACfwM8+0MPUPIunID87qjO8pF71Ovb3FzqfwM8+0MPUPIunID87qjO8pF71Ovb3FzqfwM8+0MPUPIunID87qjO8pF71Ovb3FzqfwM8+0MPUPIunID87qjO8pF71Ovb3FzqUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.40576646 0.02597228 0.6275565 ]\n [0.40576646 0.02597228 0.6275565 ]\n [0.40576646 0.02597228 0.6275565 ]\n [0.40576646 0.02597228 0.6275565 ]]",
|
60 |
+
"desired_goal": "[[ 1.4817239 0.4233176 -0.1818608 ]\n [-1.0245353 0.9878629 1.4839402 ]\n [ 0.6116718 0.72460526 -0.6575387 ]\n [ 0.716436 -1.369933 -0.94774145]]",
|
61 |
+
"observation": "[[ 4.0576646e-01 2.5972277e-02 6.2755650e-01 -1.0965879e-02\n 1.8720222e-03 5.7971419e-04]\n [ 4.0576646e-01 2.5972277e-02 6.2755650e-01 -1.0965879e-02\n 1.8720222e-03 5.7971419e-04]\n [ 4.0576646e-01 2.5972277e-02 6.2755650e-01 -1.0965879e-02\n 1.8720222e-03 5.7971419e-04]\n [ 4.0576646e-01 2.5972277e-02 6.2755650e-01 -1.0965879e-02\n 1.8720222e-03 5.7971419e-04]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxL2avDiLGT3C94w+lnZnvTfsoj1GqfY8/LfWPdrkXT0RvuI9r6LWvOhkQDxs+kE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.01888932 0.03748628 0.27532774]\n [-0.05650958 0.07955211 0.03011001]\n [ 0.10484311 0.05417333 0.11071409]\n [-0.02620062 0.01174281 0.18943185]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFcRA176A8b+UhpRSlIwBbJRLMowBdJRHQKL/hStNi6R1fZQoaAZoCWgPQwgqdF5jl6j4v5SGlFKUaBVLMmgWR0Ci/0EsjFAFdX2UKGgGaAloD0MIOnR63o0F9b+UhpRSlGgVSzJoFkdAov8Bdt2s73V9lChoBmgJaA9DCMBBe/Xx8ADAlIaUUpRoFUsyaBZHQKL+v7HAAQx1fZQoaAZoCWgPQwhZTdcTXTcDwJSGlFKUaBVLMmgWR0CjAGM7MgU2dX2UKGgGaAloD0MIkPRpFf1h9L+UhpRSlGgVSzJoFkdAowAe+IuXeHV9lChoBmgJaA9DCKxWJvxSP/u/lIaUUpRoFUsyaBZHQKL/3z1bqyJ1fZQoaAZoCWgPQwjo2az6XO3zv5SGlFKUaBVLMmgWR0Ci/51nEl3RdX2UKGgGaAloD0MI3gGetHD5BMCUhpRSlGgVSzJoFkdAowFJpeu3dHV9lChoBmgJaA9DCIfFqGvtPfO/lIaUUpRoFUsyaBZHQKMBBaFEiMZ1fZQoaAZoCWgPQwjZtb3dktz2v5SGlFKUaBVLMmgWR0CjAMYCp3otdX2UKGgGaAloD0MIoDU//tLi/7+UhpRSlGgVSzJoFkdAowCEcuJ1q3V9lChoBmgJaA9DCCwP0lPkUP2/lIaUUpRoFUsyaBZHQKMCK+u/1xt1fZQoaAZoCWgPQwjKw0KtaZ4CwJSGlFKUaBVLMmgWR0CjAeen62v0dX2UKGgGaAloD0MIvymsVFAxBMCUhpRSlGgVSzJoFkdAowGoCCBf8nV9lChoBmgJaA9DCMtmDkkt1PW/lIaUUpRoFUsyaBZHQKMBZkU9IPN1fZQoaAZoCWgPQwgXEjC6vBkDwJSGlFKUaBVLMmgWR0CjAwiTEBKddX2UKGgGaAloD0MIRdYaSu3lAcCUhpRSlGgVSzJoFkdAowLER+SbIHV9lChoBmgJaA9DCK71RUJbDvm/lIaUUpRoFUsyaBZHQKMChJ9RaX91fZQoaAZoCWgPQwgAqyNHOoP8v5SGlFKUaBVLMmgWR0CjAkLJCBwudX2UKGgGaAloD0MIem6hKxGo+r+UhpRSlGgVSzJoFkdAowPuSU1Q7HV9lChoBmgJaA9DCD5CzZAqyvy/lIaUUpRoFUsyaBZHQKMDqhNdqtZ1fZQoaAZoCWgPQwhh/3Vu2sz0v5SGlFKUaBVLMmgWR0CjA2rMLWqcdX2UKGgGaAloD0MIzAcEOpM297+UhpRSlGgVSzJoFkdAowMpBVuJlHV9lChoBmgJaA9DCEc+r3jqkf+/lIaUUpRoFUsyaBZHQKME0bqhUR51fZQoaAZoCWgPQwirI0c6A2P4v5SGlFKUaBVLMmgWR0CjBI2MbWEsdX2UKGgGaAloD0MIZsHEH0Xd9r+UhpRSlGgVSzJoFkdAowRN9c8klnV9lChoBmgJaA9DCNqR6ju/CADAlIaUUpRoFUsyaBZHQKMEDBMSK3x1fZQoaAZoCWgPQwieX5SgvxD4v5SGlFKUaBVLMmgWR0CjBbf20zCUdX2UKGgGaAloD0MImYBfI0kQ8b+UhpRSlGgVSzJoFkdAowVzw+dK/XV9lChoBmgJaA9DCNuIJ7uZUQLAlIaUUpRoFUsyaBZHQKMFNENOM2p1fZQoaAZoCWgPQwip+L8jKtT4v5SGlFKUaBVLMmgWR0CjBPJtix3WdX2UKGgGaAloD0MIF7zoK0hz97+UhpRSlGgVSzJoFkdAowab3dsSCnV9lChoBmgJaA9DCEIIyJdQAfO/lIaUUpRoFUsyaBZHQKMGV/FR51N1fZQoaAZoCWgPQwjmkxXD1cHxv5SGlFKUaBVLMmgWR0CjBhhqCYkWdX2UKGgGaAloD0MIlIWvr3Xp9r+UhpRSlGgVSzJoFkdAowXWmNzbOHV9lChoBmgJaA9DCPd0dcdiG/G/lIaUUpRoFUsyaBZHQKMHfeJHiFV1fZQoaAZoCWgPQwgFUfcBSC3yv5SGlFKUaBVLMmgWR0CjBznGsFMadX2UKGgGaAloD0MINbitLTzvAcCUhpRSlGgVSzJoFkdAowb6KYRdyHV9lChoBmgJaA9DCPiMRGgEG/u/lIaUUpRoFUsyaBZHQKMGuEvCdjJ1fZQoaAZoCWgPQwgY6rDCLb8AwJSGlFKUaBVLMmgWR0CjCGchcJMQdX2UKGgGaAloD0MI/DTuzW8YA8CUhpRSlGgVSzJoFkdAowgi4J/oaHV9lChoBmgJaA9DCABw7NlzWfC/lIaUUpRoFUsyaBZHQKMH42m51/51fZQoaAZoCWgPQwijc36K44D1v5SGlFKUaBVLMmgWR0CjB6G5tm+TdX2UKGgGaAloD0MIUfUrnQ/P8b+UhpRSlGgVSzJoFkdAowlPYDklu3V9lChoBmgJaA9DCEC9GTVfJfm/lIaUUpRoFUsyaBZHQKMJC1fmcON1fZQoaAZoCWgPQwgaaam8HSH2v5SGlFKUaBVLMmgWR0CjCMuf29L6dX2UKGgGaAloD0MI5iSUvhBy/r+UhpRSlGgVSzJoFkdAowiJ35eqrHV9lChoBmgJaA9DCHk8LT9wFfW/lIaUUpRoFUsyaBZHQKMKO+K0lZ51fZQoaAZoCWgPQwhksOJUayH2v5SGlFKUaBVLMmgWR0CjCffkWAPNdX2UKGgGaAloD0MIfXcrS3QW9L+UhpRSlGgVSzJoFkdAowm4QjD8+HV9lChoBmgJaA9DCFdaRuo9lfO/lIaUUpRoFUsyaBZHQKMJdm4Ajpt1fZQoaAZoCWgPQwgclgZ+VMP4v5SGlFKUaBVLMmgWR0CjCx2QOnVHdX2UKGgGaAloD0MIRWPt72wP+r+UhpRSlGgVSzJoFkdAowrZ1cMVlHV9lChoBmgJaA9DCHyeP21U5/y/lIaUUpRoFUsyaBZHQKMKmnAIpph1fZQoaAZoCWgPQwiPpQ9dUF/8v5SGlFKUaBVLMmgWR0CjCli5NGmUdX2UKGgGaAloD0MIclMDzeec/7+UhpRSlGgVSzJoFkdAowwBH7P6bnV9lChoBmgJaA9DCGEzwAXZ8vm/lIaUUpRoFUsyaBZHQKMLvQJHAh11fZQoaAZoCWgPQwgN424QrRXzv5SGlFKUaBVLMmgWR0CjC31c+qzadX2UKGgGaAloD0MIK6ORzyue9b+UhpRSlGgVSzJoFkdAows7ebd8A3V9lChoBmgJaA9DCOusFthjove/lIaUUpRoFUsyaBZHQKMM4FfReC11fZQoaAZoCWgPQwggRDLk2Lr9v5SGlFKUaBVLMmgWR0CjDJwcghbGdX2UKGgGaAloD0MIylLr/UY787+UhpRSlGgVSzJoFkdAowxce2d/a3V9lChoBmgJaA9DCNhhTPp7KfK/lIaUUpRoFUsyaBZHQKMMGryUcGV1fZQoaAZoCWgPQwgAb4EExU/+v5SGlFKUaBVLMmgWR0CjDccJlar4dX2UKGgGaAloD0MIowG8BRLU+b+UhpRSlGgVSzJoFkdAow2CwKSgXnV9lChoBmgJaA9DCMNhaeBHdQHAlIaUUpRoFUsyaBZHQKMNQxnnMdN1fZQoaAZoCWgPQwiqtwa2SjDxv5SGlFKUaBVLMmgWR0CjDQE+X7cgdX2UKGgGaAloD0MI740hADj2+r+UhpRSlGgVSzJoFkdAow6vC/GlynV9lChoBmgJaA9DCMTpJFtdLgHAlIaUUpRoFUsyaBZHQKMOatcv/R51fZQoaAZoCWgPQwgFFytqMA32v5SGlFKUaBVLMmgWR0CjDitJnQIEdX2UKGgGaAloD0MIILjKEwh797+UhpRSlGgVSzJoFkdAow3piRW913V9lChoBmgJaA9DCIj029eBM/q/lIaUUpRoFUsyaBZHQKMPjSUC7sh1fZQoaAZoCWgPQwjaqiSyDzL5v5SGlFKUaBVLMmgWR0CjD0jvd/KAdX2UKGgGaAloD0MIQYNNnUfF9L+UhpRSlGgVSzJoFkdAow8JVCHARHV9lChoBmgJaA9DCHOEDOTZZfW/lIaUUpRoFUsyaBZHQKMOx4sVclh1fZQoaAZoCWgPQwiXAPxTqsT8v5SGlFKUaBVLMmgWR0CjEHHv+fh/dX2UKGgGaAloD0MIOPOrOUCw8r+UhpRSlGgVSzJoFkdAoxAtpmEoOXV9lChoBmgJaA9DCPD8ogT9Bfi/lIaUUpRoFUsyaBZHQKMP7fpljEx1fZQoaAZoCWgPQwiaCBueXun4v5SGlFKUaBVLMmgWR0CjD6wpF1B/dX2UKGgGaAloD0MIhpLJqZ1h8b+UhpRSlGgVSzJoFkdAoxFV7pmmL3V9lChoBmgJaA9DCAQeGED40O6/lIaUUpRoFUsyaBZHQKMREaOPvKF1fZQoaAZoCWgPQwhw7URJSKT0v5SGlFKUaBVLMmgWR0CjENHwPRRedX2UKGgGaAloD0MIsdzSakic9r+UhpRSlGgVSzJoFkdAoxCQZOzpo3V9lChoBmgJaA9DCD1EozuIXfm/lIaUUpRoFUsyaBZHQKMSPhUBGQV1fZQoaAZoCWgPQwj7IMuCif/0v5SGlFKUaBVLMmgWR0CjEfm/N7jUdX2UKGgGaAloD0MI9YHknUOZ/b+UhpRSlGgVSzJoFkdAoxG6BEroXHV9lChoBmgJaA9DCNNmnIaowgDAlIaUUpRoFUsyaBZHQKMReB+Wnj11fZQoaAZoCWgPQwjVtItpprsBwJSGlFKUaBVLMmgWR0CjExwlByCGdX2UKGgGaAloD0MIqpm1FJD29L+UhpRSlGgVSzJoFkdAoxLX3g1m8XV9lChoBmgJaA9DCDvD1JY6SPq/lIaUUpRoFUsyaBZHQKMSmGorFwV1fZQoaAZoCWgPQwgDIy9rYoH4v5SGlFKUaBVLMmgWR0CjElbBfrrxdX2UKGgGaAloD0MIpfj4hOz8+b+UhpRSlGgVSzJoFkdAoxP5oGpuM3V9lChoBmgJaA9DCC0JUFPLVvm/lIaUUpRoFUsyaBZHQKMTtVBD5TJ1fZQoaAZoCWgPQwjzVfKxu4Dyv5SGlFKUaBVLMmgWR0CjE3WlVLi/dX2UKGgGaAloD0MIYOl8eJag/r+UhpRSlGgVSzJoFkdAoxMz2SMcZXV9lChoBmgJaA9DCI/f2/Rn3wHAlIaUUpRoFUsyaBZHQKMU3RAKOT91fZQoaAZoCWgPQwi1T8djBur3v5SGlFKUaBVLMmgWR0CjFJjEehf0dX2UKGgGaAloD0MIy52ZYDiX+b+UhpRSlGgVSzJoFkdAoxRZIDoyK3V9lChoBmgJaA9DCL3jFB3JZfm/lIaUUpRoFUsyaBZHQKMUF33YcvN1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c40f3d68d65910cadf5a97edd114523118df0b056dc4517546cd4279d5635e54
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:194b9fced4079db6709e497d8246ee75d7d137a0c4ead119def22a0d12983bb8
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f984bd66ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f984bd619f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673980303695114639, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAn8DPPtDD1DyLpyA/n8DPPtDD1DyLpyA/n8DPPtDD1DyLpyA/n8DPPtDD1DyLpyA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIam9Pxa92D64OTq++SODv5XkfD/B8b0/hpYcP7t/OT91VCi/Wmg3P/dZr78vn3K/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACfwM8+0MPUPIunID87qjO8pF71Ovb3FzqfwM8+0MPUPIunID87qjO8pF71Ovb3FzqfwM8+0MPUPIunID87qjO8pF71Ovb3FzqfwM8+0MPUPIunID87qjO8pF71Ovb3FzqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40576646 0.02597228 0.6275565 ]\n [0.40576646 0.02597228 0.6275565 ]\n [0.40576646 0.02597228 0.6275565 ]\n [0.40576646 0.02597228 0.6275565 ]]", "desired_goal": "[[ 1.4817239 0.4233176 -0.1818608 ]\n [-1.0245353 0.9878629 1.4839402 ]\n [ 0.6116718 0.72460526 -0.6575387 ]\n [ 0.716436 -1.369933 -0.94774145]]", "observation": "[[ 4.0576646e-01 2.5972277e-02 6.2755650e-01 -1.0965879e-02\n 1.8720222e-03 5.7971419e-04]\n [ 4.0576646e-01 2.5972277e-02 6.2755650e-01 -1.0965879e-02\n 1.8720222e-03 5.7971419e-04]\n [ 4.0576646e-01 2.5972277e-02 6.2755650e-01 -1.0965879e-02\n 1.8720222e-03 5.7971419e-04]\n [ 4.0576646e-01 2.5972277e-02 6.2755650e-01 -1.0965879e-02\n 1.8720222e-03 5.7971419e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxL2avDiLGT3C94w+lnZnvTfsoj1GqfY8/LfWPdrkXT0RvuI9r6LWvOhkQDxs+kE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01888932 0.03748628 0.27532774]\n [-0.05650958 0.07955211 0.03011001]\n [ 0.10484311 0.05417333 0.11071409]\n [-0.02620062 0.01174281 0.18943185]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFcRA176A8b+UhpRSlIwBbJRLMowBdJRHQKL/hStNi6R1fZQoaAZoCWgPQwgqdF5jl6j4v5SGlFKUaBVLMmgWR0Ci/0EsjFAFdX2UKGgGaAloD0MIOnR63o0F9b+UhpRSlGgVSzJoFkdAov8Bdt2s73V9lChoBmgJaA9DCMBBe/Xx8ADAlIaUUpRoFUsyaBZHQKL+v7HAAQx1fZQoaAZoCWgPQwhZTdcTXTcDwJSGlFKUaBVLMmgWR0CjAGM7MgU2dX2UKGgGaAloD0MIkPRpFf1h9L+UhpRSlGgVSzJoFkdAowAe+IuXeHV9lChoBmgJaA9DCKxWJvxSP/u/lIaUUpRoFUsyaBZHQKL/3z1bqyJ1fZQoaAZoCWgPQwjo2az6XO3zv5SGlFKUaBVLMmgWR0Ci/51nEl3RdX2UKGgGaAloD0MI3gGetHD5BMCUhpRSlGgVSzJoFkdAowFJpeu3dHV9lChoBmgJaA9DCIfFqGvtPfO/lIaUUpRoFUsyaBZHQKMBBaFEiMZ1fZQoaAZoCWgPQwjZtb3dktz2v5SGlFKUaBVLMmgWR0CjAMYCp3otdX2UKGgGaAloD0MIoDU//tLi/7+UhpRSlGgVSzJoFkdAowCEcuJ1q3V9lChoBmgJaA9DCCwP0lPkUP2/lIaUUpRoFUsyaBZHQKMCK+u/1xt1fZQoaAZoCWgPQwjKw0KtaZ4CwJSGlFKUaBVLMmgWR0CjAeen62v0dX2UKGgGaAloD0MIvymsVFAxBMCUhpRSlGgVSzJoFkdAowGoCCBf8nV9lChoBmgJaA9DCMtmDkkt1PW/lIaUUpRoFUsyaBZHQKMBZkU9IPN1fZQoaAZoCWgPQwgXEjC6vBkDwJSGlFKUaBVLMmgWR0CjAwiTEBKddX2UKGgGaAloD0MIRdYaSu3lAcCUhpRSlGgVSzJoFkdAowLER+SbIHV9lChoBmgJaA9DCK71RUJbDvm/lIaUUpRoFUsyaBZHQKMChJ9RaX91fZQoaAZoCWgPQwgAqyNHOoP8v5SGlFKUaBVLMmgWR0CjAkLJCBwudX2UKGgGaAloD0MIem6hKxGo+r+UhpRSlGgVSzJoFkdAowPuSU1Q7HV9lChoBmgJaA9DCD5CzZAqyvy/lIaUUpRoFUsyaBZHQKMDqhNdqtZ1fZQoaAZoCWgPQwhh/3Vu2sz0v5SGlFKUaBVLMmgWR0CjA2rMLWqcdX2UKGgGaAloD0MIzAcEOpM297+UhpRSlGgVSzJoFkdAowMpBVuJlHV9lChoBmgJaA9DCEc+r3jqkf+/lIaUUpRoFUsyaBZHQKME0bqhUR51fZQoaAZoCWgPQwirI0c6A2P4v5SGlFKUaBVLMmgWR0CjBI2MbWEsdX2UKGgGaAloD0MIZsHEH0Xd9r+UhpRSlGgVSzJoFkdAowRN9c8klnV9lChoBmgJaA9DCNqR6ju/CADAlIaUUpRoFUsyaBZHQKMEDBMSK3x1fZQoaAZoCWgPQwieX5SgvxD4v5SGlFKUaBVLMmgWR0CjBbf20zCUdX2UKGgGaAloD0MImYBfI0kQ8b+UhpRSlGgVSzJoFkdAowVzw+dK/XV9lChoBmgJaA9DCNuIJ7uZUQLAlIaUUpRoFUsyaBZHQKMFNENOM2p1fZQoaAZoCWgPQwip+L8jKtT4v5SGlFKUaBVLMmgWR0CjBPJtix3WdX2UKGgGaAloD0MIF7zoK0hz97+UhpRSlGgVSzJoFkdAowab3dsSCnV9lChoBmgJaA9DCEIIyJdQAfO/lIaUUpRoFUsyaBZHQKMGV/FR51N1fZQoaAZoCWgPQwjmkxXD1cHxv5SGlFKUaBVLMmgWR0CjBhhqCYkWdX2UKGgGaAloD0MIlIWvr3Xp9r+UhpRSlGgVSzJoFkdAowXWmNzbOHV9lChoBmgJaA9DCPd0dcdiG/G/lIaUUpRoFUsyaBZHQKMHfeJHiFV1fZQoaAZoCWgPQwgFUfcBSC3yv5SGlFKUaBVLMmgWR0CjBznGsFMadX2UKGgGaAloD0MINbitLTzvAcCUhpRSlGgVSzJoFkdAowb6KYRdyHV9lChoBmgJaA9DCPiMRGgEG/u/lIaUUpRoFUsyaBZHQKMGuEvCdjJ1fZQoaAZoCWgPQwgY6rDCLb8AwJSGlFKUaBVLMmgWR0CjCGchcJMQdX2UKGgGaAloD0MI/DTuzW8YA8CUhpRSlGgVSzJoFkdAowgi4J/oaHV9lChoBmgJaA9DCABw7NlzWfC/lIaUUpRoFUsyaBZHQKMH42m51/51fZQoaAZoCWgPQwijc36K44D1v5SGlFKUaBVLMmgWR0CjB6G5tm+TdX2UKGgGaAloD0MIUfUrnQ/P8b+UhpRSlGgVSzJoFkdAowlPYDklu3V9lChoBmgJaA9DCEC9GTVfJfm/lIaUUpRoFUsyaBZHQKMJC1fmcON1fZQoaAZoCWgPQwgaaam8HSH2v5SGlFKUaBVLMmgWR0CjCMuf29L6dX2UKGgGaAloD0MI5iSUvhBy/r+UhpRSlGgVSzJoFkdAowiJ35eqrHV9lChoBmgJaA9DCHk8LT9wFfW/lIaUUpRoFUsyaBZHQKMKO+K0lZ51fZQoaAZoCWgPQwhksOJUayH2v5SGlFKUaBVLMmgWR0CjCffkWAPNdX2UKGgGaAloD0MIfXcrS3QW9L+UhpRSlGgVSzJoFkdAowm4QjD8+HV9lChoBmgJaA9DCFdaRuo9lfO/lIaUUpRoFUsyaBZHQKMJdm4Ajpt1fZQoaAZoCWgPQwgclgZ+VMP4v5SGlFKUaBVLMmgWR0CjCx2QOnVHdX2UKGgGaAloD0MIRWPt72wP+r+UhpRSlGgVSzJoFkdAowrZ1cMVlHV9lChoBmgJaA9DCHyeP21U5/y/lIaUUpRoFUsyaBZHQKMKmnAIpph1fZQoaAZoCWgPQwiPpQ9dUF/8v5SGlFKUaBVLMmgWR0CjCli5NGmUdX2UKGgGaAloD0MIclMDzeec/7+UhpRSlGgVSzJoFkdAowwBH7P6bnV9lChoBmgJaA9DCGEzwAXZ8vm/lIaUUpRoFUsyaBZHQKMLvQJHAh11fZQoaAZoCWgPQwgN424QrRXzv5SGlFKUaBVLMmgWR0CjC31c+qzadX2UKGgGaAloD0MIK6ORzyue9b+UhpRSlGgVSzJoFkdAows7ebd8A3V9lChoBmgJaA9DCOusFthjove/lIaUUpRoFUsyaBZHQKMM4FfReC11fZQoaAZoCWgPQwggRDLk2Lr9v5SGlFKUaBVLMmgWR0CjDJwcghbGdX2UKGgGaAloD0MIylLr/UY787+UhpRSlGgVSzJoFkdAowxce2d/a3V9lChoBmgJaA9DCNhhTPp7KfK/lIaUUpRoFUsyaBZHQKMMGryUcGV1fZQoaAZoCWgPQwgAb4EExU/+v5SGlFKUaBVLMmgWR0CjDccJlar4dX2UKGgGaAloD0MIowG8BRLU+b+UhpRSlGgVSzJoFkdAow2CwKSgXnV9lChoBmgJaA9DCMNhaeBHdQHAlIaUUpRoFUsyaBZHQKMNQxnnMdN1fZQoaAZoCWgPQwiqtwa2SjDxv5SGlFKUaBVLMmgWR0CjDQE+X7cgdX2UKGgGaAloD0MI740hADj2+r+UhpRSlGgVSzJoFkdAow6vC/GlynV9lChoBmgJaA9DCMTpJFtdLgHAlIaUUpRoFUsyaBZHQKMOatcv/R51fZQoaAZoCWgPQwgFFytqMA32v5SGlFKUaBVLMmgWR0CjDitJnQIEdX2UKGgGaAloD0MIILjKEwh797+UhpRSlGgVSzJoFkdAow3piRW913V9lChoBmgJaA9DCIj029eBM/q/lIaUUpRoFUsyaBZHQKMPjSUC7sh1fZQoaAZoCWgPQwjaqiSyDzL5v5SGlFKUaBVLMmgWR0CjD0jvd/KAdX2UKGgGaAloD0MIQYNNnUfF9L+UhpRSlGgVSzJoFkdAow8JVCHARHV9lChoBmgJaA9DCHOEDOTZZfW/lIaUUpRoFUsyaBZHQKMOx4sVclh1fZQoaAZoCWgPQwiXAPxTqsT8v5SGlFKUaBVLMmgWR0CjEHHv+fh/dX2UKGgGaAloD0MIOPOrOUCw8r+UhpRSlGgVSzJoFkdAoxAtpmEoOXV9lChoBmgJaA9DCPD8ogT9Bfi/lIaUUpRoFUsyaBZHQKMP7fpljEx1fZQoaAZoCWgPQwiaCBueXun4v5SGlFKUaBVLMmgWR0CjD6wpF1B/dX2UKGgGaAloD0MIhpLJqZ1h8b+UhpRSlGgVSzJoFkdAoxFV7pmmL3V9lChoBmgJaA9DCAQeGED40O6/lIaUUpRoFUsyaBZHQKMREaOPvKF1fZQoaAZoCWgPQwhw7URJSKT0v5SGlFKUaBVLMmgWR0CjENHwPRRedX2UKGgGaAloD0MIsdzSakic9r+UhpRSlGgVSzJoFkdAoxCQZOzpo3V9lChoBmgJaA9DCD1EozuIXfm/lIaUUpRoFUsyaBZHQKMSPhUBGQV1fZQoaAZoCWgPQwj7IMuCif/0v5SGlFKUaBVLMmgWR0CjEfm/N7jUdX2UKGgGaAloD0MI9YHknUOZ/b+UhpRSlGgVSzJoFkdAoxG6BEroXHV9lChoBmgJaA9DCNNmnIaowgDAlIaUUpRoFUsyaBZHQKMReB+Wnj11fZQoaAZoCWgPQwjVtItpprsBwJSGlFKUaBVLMmgWR0CjExwlByCGdX2UKGgGaAloD0MIqpm1FJD29L+UhpRSlGgVSzJoFkdAoxLX3g1m8XV9lChoBmgJaA9DCDvD1JY6SPq/lIaUUpRoFUsyaBZHQKMSmGorFwV1fZQoaAZoCWgPQwgDIy9rYoH4v5SGlFKUaBVLMmgWR0CjElbBfrrxdX2UKGgGaAloD0MIpfj4hOz8+b+UhpRSlGgVSzJoFkdAoxP5oGpuM3V9lChoBmgJaA9DCC0JUFPLVvm/lIaUUpRoFUsyaBZHQKMTtVBD5TJ1fZQoaAZoCWgPQwjzVfKxu4Dyv5SGlFKUaBVLMmgWR0CjE3WlVLi/dX2UKGgGaAloD0MIYOl8eJag/r+UhpRSlGgVSzJoFkdAoxMz2SMcZXV9lChoBmgJaA9DCI/f2/Rn3wHAlIaUUpRoFUsyaBZHQKMU3RAKOT91fZQoaAZoCWgPQwi1T8djBur3v5SGlFKUaBVLMmgWR0CjFJjEehf0dX2UKGgGaAloD0MIy52ZYDiX+b+UhpRSlGgVSzJoFkdAoxRZIDoyK3V9lChoBmgJaA9DCL3jFB3JZfm/lIaUUpRoFUsyaBZHQKMUF33YcvN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (747 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.4852302859537303, "std_reward": 0.11644737743628158, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T19:12:29.247362"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1f98815a27269b214a434705a2cdbd8b26cc1f33dda435b04aac2cf97ed7d70
|
3 |
+
size 3212
|