sagorsarker
commited on
Commit
·
d83ab1b
1
Parent(s):
f17cb95
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: bn
|
3 |
+
tags:
|
4 |
+
- bengali-ner
|
5 |
+
- bengali
|
6 |
+
- bangla
|
7 |
+
- NER
|
8 |
+
license: MIT
|
9 |
+
datasets:
|
10 |
+
- wikiann
|
11 |
+
- xtreme
|
12 |
+
|
13 |
+
---
|
14 |
+
|
15 |
+
# Multi-lingual BERT Bengali Name Entity Recognition
|
16 |
+
`mBERT-Bengali-NER` is a transformer-based Bengali NER model build with [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) model and [Wikiann](https://huggingface.co/datasets/wikiann) Datasets.
|
17 |
+
|
18 |
+
## How to Use
|
19 |
+
|
20 |
+
```py
|
21 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
22 |
+
from transformers import pipeline
|
23 |
+
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("sagorsarker/mbert-bengali-ner")
|
25 |
+
model = AutoModelForTokenClassification.from_pretrained("sagorsarker/mbert-bengali-ner")
|
26 |
+
|
27 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
28 |
+
example = "আমি জাহিদ এবং আমি ঢাকায় বাস করি।"
|
29 |
+
|
30 |
+
ner_results = nlp(example)
|
31 |
+
print(ner_results)
|
32 |
+
```
|
33 |
+
|
34 |
+
## Label and ID Mapping
|
35 |
+
|
36 |
+
| Label ID | Label |
|
37 |
+
| -------- | ----- |
|
38 |
+
|0 | O |
|
39 |
+
| 1 | B-PER |
|
40 |
+
| 2 | I-PER |
|
41 |
+
| 3 | B-ORG|
|
42 |
+
| 4 | I-ORG |
|
43 |
+
| 5 | B-LOC |
|
44 |
+
| 6 | I-LOC |
|
45 |
+
|
46 |
+
## Training Details
|
47 |
+
- mBERT-Bengali-NER trained with [Wikiann](https://huggingface.co/datasets/wikiann) datasets
|
48 |
+
- mBERT-Bengali-NER trained with [transformers-token-classification](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb) script
|
49 |
+
- mBERT-Bengali-NER total trained 5 epochs.
|
50 |
+
- Trained in Kaggle GPU
|
51 |
+
|
52 |
+
## Evaluation Results
|
53 |
+
|Model | F1 | Precision | Recall | Accuracy | Loss |
|
54 |
+
| ---- | --- | --------- | ----- | -------- | --- |
|
55 |
+
|Bangla-BERT-NER | 0.97105 | 0.96769| 0.97443 | 0.97682 | 0.12511 |
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|